Skip to main content
Log in

Laser and light therapy for onychomycosis: a systematic review

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

More than just a cosmetic concern, onychomycosis is a prevalent and extremely difficult condition to treat. In older and diabetic populations, severe onychomycosis may possibly serve as a nidus for infection, and other more serious complications may ensue. Many treatment modalities for the treatment of onychomycosis have been studied, including topical lacquers and ointments, oral antifungals, surgical and chemical nail avulsion, and lasers. Due to their minimally invasive nature and potential to restore clear nail growth with relatively few sessions, lasers have become a popular option in the treatment of onychomycosis for both physicians and patients. Laser or light systems that have been investigated for this indication include the carbon dioxide, neodymium-doped yttrium aluminum garnet, 870/930-nm combination, and femtosecond infrared 800-nm lasers, in addition to photodynamic and ultraviolet light therapy. This systematic review will discuss each of these modalities as well as their respective currently published, peer-reviewed literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ghannoum MA, Hajjeh RA, Scher R, Konnikov N, Gupta AK, Summerbell R, Sullivan S, Daniel R, Krusinski P, Fleckman P, Rich P, Odom R, Aly R, Pariser D, Zaiac M, Rebell G, Lesher J, Gerlach B, Ponce-De-Leon GF, Ghannoum A, Warner J, Isham N, Elewski B (2000) A large-scale North American study of fungal isolates from nails: the frequency of onychomycosis, fungal distribution, and antifungal susceptibility patterns. J Am Acad Dermatol 43(4):641–648. doi:10.1067/mjd.2000.107754

    Article  CAS  PubMed  Google Scholar 

  2. Rothermel E, Apfelberg DB (1987) Carbon dioxide laser use for certain diseases of the toenails. Clin Podiatr Med Surg 4(4):809–821

    CAS  PubMed  Google Scholar 

  3. Schlefman BS (1999) Onychomycosis: a compendium of facts and a clinical experience. J Foot Ankle Surg: official publication of the Am Coll Foot Ankle Surg 38(4):290–302

    Article  CAS  Google Scholar 

  4. Gupta AK, Sibbald RG, Lynde CW, Hull PR, Prussick R, Shear NH, De Doncker P, Daniel CR 3rd, Elewski BE (1997) Onychomycosis in children: prevalence and treatment strategies. J Am Acad Dermatol 36(3 Pt 1):395–402

    Article  CAS  PubMed  Google Scholar 

  5. Apfelberg DB, Rothermel E, Widtfeldt A, Maser MR, Lash H (1984) Preliminary report on use of carbon dioxide laser in podiatry. J Am Podiatry Assoc 74(10):509–513

    CAS  PubMed  Google Scholar 

  6. Borovoy M, Tracy M (1992) Noninvasive CO2 laser fenestration improves treatment of onychomycosis. Clin Laser Mon 10(8):123–124

    CAS  PubMed  Google Scholar 

  7. Cutler TD, Zimmerman JJ (2011) Ultraviolet irradiation and the mechanisms underlying its inactivation of infectious agents. Anim Health Res Rev/Conf Res Work Anim Dis 12(1):15–23. doi:10.1017/S1466252311000016

    Article  Google Scholar 

  8. Dai T, Tegos GP, Rolz-Cruz G, Cumbie WE, Hamblin MR (2008) Ultraviolet C inactivation of dermatophytes: implications for treatment of onychomycosis. Br J Dermatol 158(6):1239–1246. doi:10.1111/j.1365-2133.2008.08549.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Stern DK, Creasey AA, Quijije J, Lebwohl MG (2011) UV-A and UV-B penetration of normal human cadaveric fingernail plate. Arch Dermatol 147(4):439–441. doi:10.1001/archdermatol.2010.375

    Article  PubMed  Google Scholar 

  10. Kanavy HE, Gerstenblith MR (2011) Ultraviolet radiation and melanoma. Semin Cutan Med Surg 30(4):222–228. doi:10.1016/j.sder.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  11. Smijs TG, Pavel S, Talebi M, Bouwstra JA (2009) Preclinical studies with 5,10,15-Tris(4-methylpyridinium)-20-phenyl-[21H,23H]-porphine trichloride for the photodynamic treatment of superficial mycoses caused by Trichophyton rubrum. Photochem Photobiol 85(3):733–739. doi:10.1111/j.1751-1097.2008.00468.x

    Article  CAS  PubMed  Google Scholar 

  12. Kamp H, Tietz HJ, Lutz M, Piazena H, Sowyrda P, Lademann J, Blume-Peytavi U (2005) Antifungal effect of 5-aminolevulinic acid PDT in Trichophyton rubrum. Mycoses 48(2):101–107. doi:10.1111/j.1439-0507.2004.01070.x

    Article  CAS  PubMed  Google Scholar 

  13. Donnelly RF, McCarron PA, Lightowler JM, Woolfson AD (2005) Bioadhesive patch-based delivery of 5-aminolevulinic acid to the nail for photodynamic therapy of onychomycosis. J Control Release: official J Control Release Soc 103(2):381–392. doi:10.1016/j.jconrel.2004.12.005

    Article  CAS  Google Scholar 

  14. Piraccini BM, Rech G, Tosti A (2008) Photodynamic therapy of onychomycosis caused by Trichophyton rubrum. J Am Acad Dermatol 59(5 Suppl):S75–S76. doi:10.1016/j.jaad.2008.06.015

    Article  PubMed  Google Scholar 

  15. Gilaberte Y, Aspiroz C, Martes MP, Alcalde V, Espinel-Ingroff A, Rezusta A (2011) Treatment of refractory fingernail onychomycosis caused by nondermatophyte molds with methylaminolevulinate photodynamic therapy. J Am Acad Dermatol 65(3):669–671. doi:10.1016/j.jaad.2010.06.008

    Article  PubMed  Google Scholar 

  16. Watanabe D, Kawamura C, Masuda Y, Akita Y, Tamada Y, Matsumoto Y (2008) Successful treatment of toenail onychomycosis with photodynamic therapy. Arch Dermatol 144(1):19–21. doi:10.1001/archdermatol.2007.17

    Article  PubMed  Google Scholar 

  17. Sotiriou E, Koussidou-Eremonti T, Chaidemenos G, Apalla Z, Ioannides D (2010) Photodynamic therapy for distal and lateral subungual toenail onychomycosis caused by Trichophyton rubrum: preliminary results of a single-centre open trial. Acta Derm Venereol 90(2):216–217. doi:10.2340/00015555-0811

    Article  PubMed  Google Scholar 

  18. Smijs TG, Schuitmaker HJ (2003) Photodynamic inactivation of the dermatophyte Trichophyton rubrum. Photochem Photobiol 77(5):556–560

    Article  CAS  PubMed  Google Scholar 

  19. Smijs TG, van der Haas RN, Lugtenburg J, Liu Y, de Jong RL, Schuitmaker HJ (2004) Photodynamic treatment of the dermatophyte Trichophyton rubrum and its microconidia with porphyrin photosensitizers. Photochem Photobiol 80(2):197–202. doi:10.1562/2004-04-22-RA-146

    Article  CAS  PubMed  Google Scholar 

  20. Smijs TG, Bouwstra JA, Schuitmaker HJ, Talebi M, Pavel S (2007) A novel ex vivo skin model to study the susceptibility of the dermatophyte Trichophyton rubrum to photodynamic treatment in different growth phases. J Antimicrob Chemother 59(3):433–440. doi:10.1093/jac/dkl490

    Article  CAS  PubMed  Google Scholar 

  21. Smijs TG, Bouwstra JA, Talebi M, Pavel S (2007) Investigation of conditions involved in the susceptibility of the dermatophyte Trichophyton rubrum to photodynamic treatment. J Antimicrob Chemother 60(4):750–759. doi:10.1093/jac/dkm304

    Article  CAS  PubMed  Google Scholar 

  22. Amorim JC, Soares BM, Alves OA, Ferreira MV, Sousa GR, Silveira Lde B, Piancastelli AC, Pinotti M (2012) Phototoxic action of light emitting diode in the in vitro viability of Trichophyton rubrum. An Bras Dermatol 87(2):250–255

    PubMed  Google Scholar 

  23. Bornstein E, Hermans W, Gridley S, Manni J (2009) Near-infrared photoinactivation of bacteria and fungi at physiologic temperatures. Photochem Photobiol 85(6):1364–1374. doi:10.1111/j.1751-1097.2009.00615.x

    Article  CAS  PubMed  Google Scholar 

  24. Landsman AS, Robbins AH, Angelini PF, Wu CC, Cook J, Oster M, Bornstein ES (2010) Treatment of mild, moderate, and severe onychomycosis using 870- and 930-nm light exposure. J Am Podiatr Med Assoc 100(3):166–177

    PubMed  Google Scholar 

  25. Landsman AS, Robbins AH (2012) Treatment of mild, moderate, and severe onychomycosis using 870- and 930-nm light exposure: some follow-up observations at 270 days. J Am Podiatr Med Assoc 102(2):169–171

    PubMed  Google Scholar 

  26. Yang MU, Yaroslavsky AN, Farinelli WA, Flotte TJ, Rius-Diaz F, Tsao SS, Anderson RR (2005) Long-pulsed neodymium:yttrium-aluminum-garnet laser treatment for port-wine stains. J Am Acad Dermatol 52(3 Pt 1):480–490. doi:10.1016/j.jaad.2004.10.876

    Article  PubMed  Google Scholar 

  27. Kawai K, Akita T, Nishibe S, Nozawa Y, Ogihara Y, Ito Y (1976) Biochemical studies of pigments from a pathogenic fungus Microsporum cookei. III. Comparison of the effects of xanthomegnin and O-methylxanthomegnin on the oxidative phosphorylation of rat liver mitochondria. J Biochem 79(1):145–152

    CAS  PubMed  Google Scholar 

  28. Gupta AK, Ahmad I, Borst I, Summerbell RC (2000) Detection of xanthomegnin in epidermal materials infected with Trichophyton rubrum. J Invest Dermatol 115(5):901–905. doi:10.1046/j.1523-1747.2000.00150.x

    Article  CAS  PubMed  Google Scholar 

  29. Vural E, Winfield HL, Shingleton AW, Horn TD, Shafirstein G (2008) The effects of laser irradiation on Trichophyton rubrum growth. Lasers Med Sci 23(4):349–353. doi:10.1007/s10103-007-0492-4

    Article  PubMed  Google Scholar 

  30. Hees H, Raulin C, Baumler W (2012) Laser treatment of onychomycosis: an in vitro pilot study. Journal der Deutschen Dermatologischen Gesellschaft = J Ger Soc Dermatol: JDDG. doi:10.1111/j.1610-0387.2012.07997.x

  31. Choi MJ, Zheng Z, Goo B, Cho SB (2012) Antifungal effects of a 1,444-nm neodymium:yttrium-aluminium-garnet laser on onychomycosis: a pilot study. J Dermatol Treat. doi:10.3109/09546634.2012.714455

  32. Hochman LG (2011) Laser treatment of onychomycosis using a novel 0.65-millisecond pulsed Nd:YAG 1064-nm laser. J Cosmet Laser Ther: official publication of the Eur Soc Laser Dermatol 13(1):2–5. doi:10.3109/14764172.2011.552616

    Article  Google Scholar 

  33. Kimura U, Takeuchi K, Kinoshita A, Takamori K, Hiruma M, Suga Y (2012) Treating onychomycoses of the toenail: clinical efficacy of the sub-millisecond 1,064 nm Nd: YAG laser using a 5 mm spot diameter. J Drugs Dermatol: JDD 11(4):496–504

    CAS  PubMed  Google Scholar 

  34. Shen N (2003) Photodisruption in biological tissues using femtosecond laser pulses. Harvard University Press, Cambridge

    Google Scholar 

  35. Manevitch Z, Lev D, Hochberg M, Palhan M, Lewis A, Enk CD (2010) Direct antifungal effect of femtosecond laser on Trichophyton rubrum onychomycosis. Photochem Photobiol 86(2):476–479. doi:10.1111/j.1751-1097.2009.00672.x

    Article  CAS  PubMed  Google Scholar 

  36. Warshaw EM, St Clair KR (2005) Prevention of onychomycosis reinfection for patients with complete cure of all 10 toenails: results of a double-blind, placebo-controlled, pilot study of prophylactic miconazole powder 2 %. J Am Acad Dermatol 53(4):717–720. doi:10.1016/j.jaad.2005.06.019

    Article  PubMed  Google Scholar 

  37. Forbes PD, Davies RE, Urbach F (1979) Aging, environmental influences, and photocarcinogenesis. J Invest Dermatol 73(1):131–134

    Article  CAS  PubMed  Google Scholar 

  38. Swerdlow AJ, English JS, MacKie RM, O’Doherty CJ, Hunter JA, Clark J, Hole DJ (1988) Fluorescent lights, ultraviolet lamps, and risk of cutaneous melanoma. BMJ 297(6649):647–650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Ledon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledon, J.A., Savas, J., Franca, K. et al. Laser and light therapy for onychomycosis: a systematic review. Lasers Med Sci 29, 823–829 (2014). https://doi.org/10.1007/s10103-012-1232-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1232-y

Keywords

Navigation