Skip to main content

Advertisement

Log in

Rheumatoid arthritis is linked to Proteus—the evidence

  • Review Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory arthritic and potentially disabling condition, mainly affecting women of middle age and having characteristic clinical features. Various microbial agents were implicated in the causation of RA. Extensive literature based on the results of various genetic, microbiological, molecular, and immunological studies carried out by independent research groups supports the role of Proteus mirabilis bacteria in the etiopathogenesis of RA. New diagnostic markers and criteria and the use of a novel therapeutic protocol in the form of antibiotic and dietary measures are suggested to be used together with current treatments in the management of RA. Prospective longitudinal studies with the use of antimicrobial measures in patients with RA are required to establish the therapeutic benefit of this microbe–disease association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cooper NJ (2000) Economic burden of rheumatoid arthritis a systematic review. Rheumatology 39:28–33

    Article  PubMed  CAS  Google Scholar 

  2. Sacks JJ, Helmick CG, Langmaid G (2004) Deaths from arthritis and other rheumatic conditions, United States, 1979–1998. J Rheumatol 31:1823–1828

    PubMed  Google Scholar 

  3. Turesson C, Mattesson EL (2006) Genetics of rheumatoid arthritis. Mayo Clin Proc 81:94–101

    Article  PubMed  CAS  Google Scholar 

  4. MacGregor AJ, Snieder H, Rigby AS, Koskenvuo M, Kaprio J, Aho K et al (2000) Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum 43:30–37

    Article  PubMed  CAS  Google Scholar 

  5. Stastny P (1976) Mixed lymphocyte cultures in rheumatoid arthritis. J Clin Invest 57:1148–1157

    PubMed  CAS  Google Scholar 

  6. Watanabe Y, Tokunaga K, Matsuki K, Takeuchi F, Matsuta K, Maeda H et al (1989) Putative amino acid sequence of HLA-DRβ chain contributing to rheumatoid arthritis susceptibility. J Exp Med 169:2263–2268

    Article  PubMed  CAS  Google Scholar 

  7. Gregersen PK, Silver J, Winchester RJ (1987) The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 30:1205–1213

    Article  PubMed  CAS  Google Scholar 

  8. Wallin J, Hillert J, Olerup O, Carlsson B, Strom H (1991) Association of rheumatoid arthritis with a dominant DR1/Dw4/Dw14 sequence motif, but not with T cell receptor beta chain gene alleles or haplotypes. Arthritis Rheum 34:1416–1424

    Article  PubMed  CAS  Google Scholar 

  9. Gonzalez-Gay MA, Garcia-Porrua C, Hajeer AH (2002) Influence of human leukocyte antigen-DRB1 on the susceptibility and severity of rheumatoid arthritis. Semin Arthritis Rheum 31:355–360

    Article  PubMed  CAS  Google Scholar 

  10. Gorman JD, Lum RF, Chen JJ, Suarez-Almazor ME, Thomson G, Criswell LA (2004) Impact of shared epitope genotype and ethnicity on erosive disease: a meta-analysis of 3,240 rheumatoid arthritis patients. Arthritis Rheum 50:400–412

    Article  PubMed  Google Scholar 

  11. Silman AJ, MacGregor AJ, Thomson W, Holligan S, Carthy D, Farhan A et al (1993) Twin concordance rates for rheumatoid arthritis: results from a nation-wide study. Br J Rheumatol 32:903–907

    Article  PubMed  CAS  Google Scholar 

  12. Svendsen AJ, Holm NV, Kyvik K, Petersen PH, Junker P (2002) Relative importance of genetic effects in rheumatoid arthritis: historical cohort study of Danish nationwide twin population. Br Med J 324:264–266

    Article  Google Scholar 

  13. Sawada S, Takei M (2005) Epstein–Barr virus etiology in rheumatoid synovitis. Autoimmun Rev 4:106–110

    Article  PubMed  CAS  Google Scholar 

  14. Rickinson AB, Kieff E (1996) Epstein–Barr virus. In: Fields BN, Knipe DM, Howley PM et al (eds) Fields virology. Lippincott-Raven, Philadelphia, pp 2397–2446

    Google Scholar 

  15. Callan MF (2004) Epstein-Barr virus, arthritis, and the development of lymphoma in arthritis patients. Curr Opin Rheumatol 16:399–405

    Article  PubMed  Google Scholar 

  16. Berthelot JM, Saulquin X, Coste-Burel M, Peyrat MA, Echasserieau K, Bonneville M et al (2003) Search for correlation of CD8 T cell response to Epstein–Barr virus with clinical status in rheumatoid arthritis: a 15 month follow-up pilot study. J Rheumatol 30:1673–1679

    PubMed  Google Scholar 

  17. Fox RI, Chilton T, Rhodes G, Vaughan JH (1986) Lack of reactivity of rheumatoid arthritis synovial membrane DNA with cloned Epstein–Barr virus DNA probes. J Immunol 137:498–501

    PubMed  CAS  Google Scholar 

  18. Niedobitek G, Lisner R, Swoboda B, Rooney N, Fassbender HG, Kirchner T et al (2000) Lack of evidence for an involvement of Epstein–Barr virus infection of synovial membranes in the pathogenesis of rheumatoid arthritis. Arthritis Rheum 43:151–154

    Article  PubMed  CAS  Google Scholar 

  19. Murai C, Munakata Y, Takahashi Y, Ishii T, Shibata S, Muryoi T et al (1999) Rheumatoid arthritis after human parvovirus B19 infection. Ann Rheum Dis 58:130–132

    PubMed  CAS  Google Scholar 

  20. Takasawa N, Munakata Y, Ishii KK, Takahashi Y, Takahashi M, Fu Y et al (2004) Human parvovirus B19 transgenic mice become susceptible to polyarthritis. J Immunol 173:4675–4683

    PubMed  CAS  Google Scholar 

  21. Nikkari S, Luukkainen R, Mottonen T, Meurman O, Hannonen P, Skurnik M et al (1994) Does parvovirus B19 have a role in rheumatoid arthritis? Ann Rheum Dis 53:106–111

    PubMed  CAS  Google Scholar 

  22. Meyer O (2003) Parvovirus B19 and autoimmune diseases. Joint Bone Spine 70:6–11

    Article  PubMed  Google Scholar 

  23. Bosma TJ, Etherington J, O’Shea S, Corbett K, Cottam F, Holt L et al (1998) Rubella virus and chronic joint disease: is there an association? J Clin Microbiol 36:3524–3526

    PubMed  CAS  Google Scholar 

  24. Zhang D, Nikkari S, Vainionpaa R, Luukkainen R, Yli-Kerttula U, Toivanen P (1997) Detection of rubella, mumps, and measles virus genomic RNA in cells from synovial fluid and peripheral blood in early rheumatoid arthritis. J Rheumatol 24:1260–1265

    PubMed  CAS  Google Scholar 

  25. Mehraein Y, Lennerz C, Ehlhardt S, Remberger K, Ojak A, Zang KD (2004) Latent Epstein–Barr virus (EBV) infection and cytomegalovirus (CMV) infection in synovial tissue of autoimmune chronic arthritis determined by RNA- and DNA-in situ hybridization. Mod Pathol 17:781–789

    Article  PubMed  CAS  Google Scholar 

  26. Holoshitz J, Klajman A, Drucker I, Lapidot Z, Yaretzky A, Frenkel A et al (1986) T lymphocytes of rheumatoid arthritis patients show augmented reactivity to a fraction of mycobacteria cross-reactive with cartilage. Lancet 2:305–309

    Article  PubMed  CAS  Google Scholar 

  27. Horowitz S, Evinson B, Borer A, Horowitz J (2000) Mycoplasma fermentans in rheumatoid arthritis and other inflammatory arthritides. J Rheumatol 27:2747–2753

    PubMed  CAS  Google Scholar 

  28. Auger I, Escola JM, Gorvel JP, Roudier J (1996) HLA-DR4 and HLA-DR10 motifs that carry susceptibility to rheumatoid arthritis bind 70-kD heat shock proteins. Nat Med 2:306–310

    Article  PubMed  CAS  Google Scholar 

  29. Askling J, Fored CM, Brandt L, Baecklund E, Bertilsson L, Coster L et al (2005) Risk and case characteristics of tuberculosis in rheumatoid arthritis associated with tumor necrosis factor antagonists in Sweden. Arthritis Rheum 52:1986–1992

    Article  PubMed  CAS  Google Scholar 

  30. Van Eden W, Thole JE, van der Zee R, Noordzij A, van Embden JD, Hensen EJ et al (1988) Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature 331:171–173

    Article  PubMed  Google Scholar 

  31. Gaston JS, Life PF, Bailey LC, Bacon PA (1989) In vitro responses to a 65-kilodalton mycobacterial protein by synovial T cells from inflammatory arthritis patients. J Immunol 143:2494–2500

    PubMed  CAS  Google Scholar 

  32. Res PC, Telgt D, van Laar JM, Pool MO, Breedveld FC, de Vries RR (1990) High antigen reactivity in mononuclear cells from sites of chronic inflammation. Lancet 336:1406–1408

    Article  PubMed  CAS  Google Scholar 

  33. Van der Heijden IM, Wilbrink B, Schouls LM, van Embden JD, Breedveld FC, Tak PP (1999) Detection of mycobacteria in joint samples from patients with arthritis using a genus-specific polymerase chain reaction and sequence analysis. Rheumatology 38:547–553

    Article  PubMed  Google Scholar 

  34. Haier J, Nasralla M, Franco AR, Nicolson GL (1999) Detection of mycoplasma infections in blood of patients with rheumatoid arthritis. Rheumatology 38:504–509

    Article  PubMed  CAS  Google Scholar 

  35. Schaeverbeke T, Gilroy CB, Bebear C, Dehais J, Taylor-Robinson D (1996) Mycoplasma fermentans, but not M. penetrans, detected by PCR assays in synovium from patients with rheumatoid arthritis and other rheumatic disorders. J Clin Pathol 49:824–828

    PubMed  CAS  Google Scholar 

  36. Hoffman RW, O’Sullivan FX, Schafermeyer KR, Moore TL, Roussell D, Watson-McKown R et al (1997) Mycoplasma infection and rheumatoid arthritis: analysis of their relationship using immunoblotting and an ultrasensitive polymerase chain reaction detection method. Arthritis Rheum 40:1219–1228

    PubMed  CAS  Google Scholar 

  37. Albani S, Tuckwell JE, Esparza L, Carson DA, Roudier J (1992) The susceptibility sequence to rheumatoid arthritis is a cross-reactive B cell epitope shared by the Escherichia coli heat shock protein dnaJ and the histocompatibility leukocyte antigen DRB10401 molecule. J Clin Invest 89:327–331

    PubMed  CAS  Google Scholar 

  38. Handley HH, Yu J, Yu DT, Singh B, Gupta RS, Vaughan JH (1996) Autoantibodies to human heat shock protein (hsp) 60 may be induced by Escherichia coli groEL. Clin Exp Immunol 103:429–435

    Article  PubMed  CAS  Google Scholar 

  39. Gerard HC, Wang Z, Wang GF, El-Gabalawy H, Goldbach-Mansky R, Li Y et al (2001) Chromosomal DNA from a variety of bacterial species is present in synovial tissue from patients with various forms of arthritis. Arthritis Rheum 44:1689–1697

    Article  PubMed  CAS  Google Scholar 

  40. Ebringer A, Ptaszynska T, Corbett M, Wilson C, Macafee Y, Avakian H et al (1985) Antibodies to Proteus in rheumatoid arthritis. Lancet ii:305–307

    Article  Google Scholar 

  41. Khalafpour S, Ebringer A (1987) Cross-reactivity between HLA-DR4 and Proteus mirabilis. Period Biol (Zagreb) 89(Suppl 1):203

    Google Scholar 

  42. Ebringer A, Cunningham P, Ahmadi K, Wrigglesworth J, Hosseini R, Wilson C (1992) Sequence similarity between HLA-DR1 and DR4 subtypes associated with rheumatoid arthritis and Proteus/Serratia membrane haemolysins. Ann Rheum Dis 51:1245–1246

    PubMed  CAS  Google Scholar 

  43. Wilson C, Ebringer A, Ahmadi K, Wrigglesworth J, Tiwana H, Fielder M et al (1995) Shared amino acid sequences between major histocompatibility complex class II glycoproteins, type XI collagen and Proteus mirabilis in rheumatoid arthritis. Ann Rheum Dis 54:216–220

    PubMed  CAS  Google Scholar 

  44. Tiwana H, Wilson C, Alvarez A, Abuknesha R, Bansal S, Ebringer A (1999) Cross-reactivity between the rheumatoid arthritis-associated motif EQKRAA and structurally related sequences found in Proteus mirabilis. Infect Immun 67:2769–2775

    PubMed  CAS  Google Scholar 

  45. Senior BW, Anderson GA, Morley KD, Kerr MA (1999) Evidence that patients with rheumatoid arthritis have asymptomatic ‘non-significant’ Proteus mirabilis bacteriuria more frequently than healthy controls. J Infect 38:99–106

    Article  PubMed  CAS  Google Scholar 

  46. Wilson C, Rashid T, Tiwana H, Beyan H, Hughes L, Bansal S et al (2003) Cytotoxicity responses to peptide antigens in rheumatoid arthritis and ankylosing spondylitis. J Rheumatol 30:972–978

    PubMed  CAS  Google Scholar 

  47. Ebringer A, Rashid T, Wilson C (2003) Rheumatoid arthritis: proposal for the use of anti-microbial therapy in early cases. Scand J Rheumatol 32:2–11

    Article  PubMed  Google Scholar 

  48. Ebringer A, Wilson C, Ahmadi K, Corbett M, Rashid T, Shipley M (1993) Rheumatoid arthritis as a reactive arthritis to Proteus infection: Prospects for therapy. In: Machtey I (ed) Progress in rheumatology, sixth international seminar on the treatment of rheumatic diseases, vol. 5, pp 77–83

  49. Wilson C, Thakore D, Isenberg D, Ebringer A (1997) Correlation between anti-Proteus antibodies and isolation rates of P. mirabilis in rheumatoid arthritis. Rheumatol Int 16:187–189

    Article  PubMed  CAS  Google Scholar 

  50. Senior BW (1979) The special affinity of particular types of Proteus mirabilis for the urinary tract. J Med Microbiol 12:1–8

    Article  PubMed  CAS  Google Scholar 

  51. Ronald AR, Nicolle LE (2001) Infections of the upper urinary tract. In: Schlier RW (ed) Diseases of the kidney and urinary tract. Williams & Wilkins, Philadelphia, pp 941–969

    Google Scholar 

  52. Lawson AA, Maclean N (1966) Renal disease and drug therapy in rheumatoid arthritis. Ann Rheum Dis 25:441–449

    PubMed  CAS  Google Scholar 

  53. Tishler M, Caspi D, Aimog Y, Segal R, Yaron M (1992) Increased incidence of urinary tract infection in patients with rheumatoid arthritis and secondary Sjogren’s syndrome. Ann Rheum Dis 51:601–606

    Google Scholar 

  54. Vandenbroucke JP, Kaaks R, Valkenburg HA, Boersma JW, Cats A, Festen JJ et al (1987) Frequency of infections among rheumatoid arthritis patients, before and after disease onset. Arthritis Rheum 30:810–813

    Article  PubMed  CAS  Google Scholar 

  55. Wanchu A, Deodhar SD, Sharma M, Gupta V, Bambery P, Sud A (1997) Elevated levels of anti-Proteus antibodies in patients with active rheumatoid arthritis. Indian J Med Res 105:39–42

    PubMed  CAS  Google Scholar 

  56. Rashid T, Darlington G, Kjeldsen-Kragh J, Forre O, Collado A, Ebringer A (1999) Proteus IgG antibodies and C-reactive protein in English, Norwegian and Spanish patients with rheumatoid arthritis. Clin Rheumatol 18:190–195

    Article  PubMed  CAS  Google Scholar 

  57. Chen T, Rimpilainen M, Luukkainen R, Mottonen T, Yli-Jama T, Jalava J et al (2003) Bacterial components in the synovial tissue of patients with advanced rheumatoid arthritis or osteoarthritis: analysis with gas chromatography–mass spectrometry and pan-bacterial polymerase chain reaction. Arthritis Rheum 49:328–334

    Article  PubMed  CAS  Google Scholar 

  58. Hara Y, Kaneko T, Yoshimura A, Kato I (1996) Serum rheumatoid factor induced by intraperitoneal administration of periodontopathic bacterial lipopolysaccharide in mice. J Periodontal Res 31:502–507

    Article  PubMed  CAS  Google Scholar 

  59. Posnett DN, Edinger J (1997) When do microbes stimulate rheumatoid factor? J Exp Med 185:1721–1723

    Article  PubMed  CAS  Google Scholar 

  60. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324

    Article  PubMed  CAS  Google Scholar 

  61. Maddison PJ, Huey P (2004) Serological profile. In: Isenberg DA, Maddison PJ, Woo P, Glass DN, Breedveld FC (eds) Oxford textbook of rheumatology. Oxford University Press, Oxford, pp 491–499

    Google Scholar 

  62. Rashid T, Ebringer A, Wilson C, Bansal S, Paimela L, Binder A (2006) The potential use of antibacterial peptide antibody indices in the diagnosis of rheumatoid arthritis and ankylosing spondylitis. J Clin Rheumatol 12:11–16

    Article  PubMed  Google Scholar 

  63. Roberts LJ, Cleland LG, Thomas R, Proudman SM (2006) Early combination disease modifying antirheumatic drug treatment for rheumatoid arthritis. Med J Aust 184:122–125

    PubMed  Google Scholar 

  64. Van der Heijde D, Klaresdog L, Rodriguez-Valverde V, Codreanu C, Bolosiu H, Melo-Gomes J et al (2006) Comparison of etanercept and methotrexate, alone and combined, in the treatment of rheumatoid arthritis. Two-year clinical and radiographic results from the TEMPO study, a double-blind, randomized trial. Arthritis Rheum 54:1063–1074

    Article  PubMed  CAS  Google Scholar 

  65. Merkesdal S, Ruof J, Mittendorf T, Zeidler H (2004) Cost-effectiveness of TNF-alpha-blocking agents in the treatment of rheumatoid arthritis. Expert Opin Pharmacother 5:1881–1886

    Article  PubMed  CAS  Google Scholar 

  66. Fleischmann RM, Iqbal I, Stern RL (2004) Considerations with the use of biological therapy in the treatment of rheumatoid arthritis. Expert Opin Drug Saf 3:391–403

    Article  PubMed  CAS  Google Scholar 

  67. Khalafpour S, Ebringer A, Abuljadayel I, Corbett M (1988) Antibodies to Klebsiella and Proteus microorganisms in ankylosing spondylitis and rheumatoid arthritis patients measured by ELISA. Br J Rheumatol 27(Suppl II):86–89

    PubMed  Google Scholar 

  68. Deighton CM, Gray SW, Biant AJ, Walker DJ (1992) Specificity of the Proteus antibody response in rheumatoid arthritis. Ann Rheum Dis 51:1206–1207

    Article  PubMed  CAS  Google Scholar 

  69. Subair H, Tiwana H, Fielder M, Binder A, Cunningham K, Ebringer A et al (1995) Elevation in anti-Proteus antibodies in patients with rheumatoid arthritis from Bermuda and England. J Rheumatol 22:1825–1828

    PubMed  CAS  Google Scholar 

  70. Fielder M, Tiwana H, Youinou P, Le Goff P, Deonarian R, Wilson C et al (1995) The specificity of the anti-Proteus antibody response in tissue-typed rheumatoid arthritis (RA) patients from Brest. Rheumatol Int 15:79–82

    Article  PubMed  CAS  Google Scholar 

  71. Tiwana H, Wilson C, Cunningham P, Binder A, Ebringer A (1996) Antibodies to four gram-negative bacteria in rheumatoid arthritis which share sequences with the rheumatoid arthritis susceptibility motif. Br J Rheumatol 35:592–594

    Article  PubMed  CAS  Google Scholar 

  72. Tiwana H, Wilson C, Walmsley RS, Wakefield AJ, Smith MS, Cox NL et al (1997) Antibody response to gut bacteria in ankylosing spondylitis, rheumatoid arthritis, Crohn’s disease and ulcerative colitis. Rheumatol Int 17:11–16

    Article  PubMed  CAS  Google Scholar 

  73. Tani Y, Tiwana H, Hukuda S, Nishioka J, Fielder M, Wilson C et al (1997) Antibodies to Klebsiella, Proteus and HLA-B27 peptides in Japanese patients with ankylosing spondylitis and rheumatoid arthritis. J Rheumatol 24:109–114

    PubMed  CAS  Google Scholar 

  74. Blankenberg-Sprenkels SHD, Fielder M, Feldkamp TEW, Tiwana H, Wilson C, Ebringer A (1998) Antibodies to Klebsiella pneumoniae in Dutch patients with ankylosing spondylitis and acute anterior uveitis and to Proteus mirabilis in rheumatoid arthritis. J Rheumatol 25:743–747

    PubMed  CAS  Google Scholar 

  75. Newkirk MM, Goldbach-Mansky R, Senior BW, Klippel J, Schumacher HR Jr, El-Gabalawy HS (2005) Elevated levels of IgM and IgA antibodies to Proteus mirabilis and IgM antibodies to Escherichia coli are associated with early rheumatoid factor (RF)-positive rheumatoid arthritis. Rheumatology 44:1433–1441

    Article  PubMed  CAS  Google Scholar 

  76. Rashid T, Leirisalo-Repo M, Tani Y, Hukuda S, Kobayashi S, Wilson C et al (2004) Antibacterial and antipeptide antibodies in Japanese and Finnish patients with rheumatoid arthritis. Clin Rheumatol 23:134–141

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank the Trustees of the Middlesex Hospital, the Arthritis Research Campaign (grant no. EO514) and “American Friends of King’s College London” for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Ebringer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashid, T., Ebringer, A. Rheumatoid arthritis is linked to Proteus—the evidence. Clin Rheumatol 26, 1036–1043 (2007). https://doi.org/10.1007/s10067-006-0491-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-006-0491-z

Keywords

Navigation