Skip to main content

Advertisement

Log in

Numerical modeling of fracking fluid migration through fault zones and fractures in the North German Basin

Modélisation numérique de la migration des fluides de fracturation hydraulique dans de zones de failles et des fractures dans le Bassin d’Allemagne du Nord

Modelado numérico de la migración de fluidos por fracturación hidráulica a través de zonas de fallas y fracturas en la Cuenca Norte de Alemania

德国北部流域断层带和断裂带水力压裂液体运移的数值模拟

Modelagem numérica da migração de fluidos de fraturamento hidráulica através de zonas de falha e fraturas na Bacia do Norte da Alemanha

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

An Erratum to this article was published on 23 August 2016

Abstract

Gas production from shale formations by hydraulic fracturing has raised concerns about the effects on the quality of fresh groundwater. The migration of injected fracking fluids towards the surface was investigated in the North German Basin, based on the known standard lithology. This included cases with natural preferential pathways such as permeable fault zones and fracture networks. Conservative assumptions were applied in the simulation of flow and mass transport triggered by a high pressure boundary of up to 50 MPa excess pressure. The results show no significant fluid migration for a case with undisturbed cap rocks and a maximum of 41 m vertical transport within a permeable fault zone during the pressurization. Open fractures, if present, strongly control the flow field and migration; here vertical transport of fracking fluids reaches up to 200 m during hydraulic fracturing simulation. Long-term transport of the injected water was simulated for 300 years. The fracking fluid rises vertically within the fault zone up to 485 m due to buoyancy. Progressively, it is transported horizontally into sandstone layers, following the natural groundwater flow direction. In the long-term, the injected fluids are diluted to minor concentrations. Despite the presence of permeable pathways, the injected fracking fluids in the reported model did not reach near-surface aquifers, either during the hydraulic fracturing or in the long term. Therefore, the probability of impacts on shallow groundwater by the rise of fracking fluids from a deep shale-gas formation through the geological underground to the surface is small.

Résumé

La production de gaz de schiste par fracturation hydraulique a soulevé des inquiétudes au sujet des effets sur la qualité des eaux douces souterraines. La migration des fluides injectés pour la fracturation à partir de la surface a été étudiée dans le bassin d’Allemagne du Nord, sur la base de la lithologie standard connue. Cela comprenait des cas avec des voies préférentielles naturelles telles que des zones de failles perméables et des réseaux de fractures. Des hypothèses prudentes ont été appliquées dans la simulation des écoulements et du transport de masse déclenchés par une limite à haute pression allant jusqu’à 50 MPa d’excès de pression. Les résultats montrent aucune migration significative de fluide pour le cas avec des roches de couverture et un maximum de 41 m de transport vertical au sein d’une zone de failles perméables au cours de la mise en pression. Les fractures ouvertes, le cas échéant, contrôlent fortement le champ d’écoulement et la migration ; dans cas le transport vertical des fluides utilisées pour la fracturation hydraulique atteint jusqu’à 200 m lors de la simulation de la fracturation hydraulique. Le transport sur le long terme de l’eau injectée a été simulé pendant 300 ans. Le fluide de fracturation hydraulique monte verticalement dans la zone de faille jusqu’à 485 m en raison de la flottabilité. Progressivement, il est transporté horizontalement dans les couches de grès, en suivant la direction de l’écoulement naturel des eaux souterraines. A long terme, les fluides injectés sont dilués à des concentrations mineures. Malgré la présence de voies d’écoulement perméables, les fluides de fracturation hydraulique injectés dans le modèle rapporté n’ont pas atteint la proche surface des aquifères, que ce soit au cours de la fracturation hydraulique ou sur le long terme. Par conséquence, la probabilité d’impact sur les eaux souterraines peu profondes par la remontée de fluides de fracturation hydraulique à partir de la formation profonde de gaz de schiste à travers le sous-sol géologique vers la surface est faible.

Resumen

La producción de gas a partir de formaciones de esquisto por fracturación hidráulica ha planteado preocupación por los efectos sobre la calidad del agua subterránea dulce. Se investigó la migración de fluidos inyectados por el fracking hacia la superficie en la Cuenca Norte de Alemania, basado en las características litológicas estándar conocidas. Esto incluye los casos por vías preferenciales naturales como zonas de fallas permeables y redes de fracturas. Se aplicaron supuestos conservativos en la simulación de flujo y transporte de masa provocado por una alta barrera de presión de hasta 50 MPa de exceso de presión. Los resultados no muestran una migración significativa de fluidos para un caso con rocas de cubierta no perturbadas y un máximo de 41 m de transporte vertical dentro de una zona de falla permeable durante la presurización. Las fracturas abiertas, si están presentes, controlan fuertemente el campo de flujo y la migración; aquí el transporte vertical de fluidos por la fracturación hidráulica alcanza hasta 200 m durante la simulación. El transporte a largo plazo del agua inyectada se simuló durante 300 años. El fluido de fracturación hidráulica se eleva verticalmente dentro de la zona de falla hasta 485 m debido a la flotabilidad. Progresivamente, se transporta horizontalmente en capas de arenisca, siguiendo la dirección del flujo natural del agua subterránea. A largo plazo, los fluidos inyectados se diluyen a concentraciones menores. A pesar de la presencia de vías permeables, en el modelo los fluidos inyectados por fracturación no alcanzaron acuíferos próximos a la superficie, ya sea durante la fracturación hidráulica o en el largo plazo. Por lo tanto la probabilidad de impactos en el agua subterránea poco profunda por el ascenso de los fluidos de la fracturación en una formación de gas de esquisto profunda a través del subsuelo geológico a la superficie es pequeña.

摘要

水力压裂开采页岩气对地下淡水水质造成的影响引起了人们的关切。根据已知的标准岩性特征调查了德国北部流域注入的水力压裂液体向地表运移的情况。这包括具有天然优先通道的案例,诸如透水的断层带和断裂网络。在50 MPa超压的高压边界导致的水流和 水体迁移模拟中,应用了保守假设。结果显示,在透水断层带内具有非扰动盖岩及最大41米垂直运移的案例中,增压期间没有出现重大的液体迁移。开放断裂,如果存在的话,将极力控制水流场和迁移;在水里压裂模拟中,这里压裂液体的垂直运移达到200米。模拟了300年的注入水的长期运移情况。由于浮力原因,压裂液体在断层带内垂直上升485米。进而按照天然地下水流方向逐渐横向运移到砂岩层。长此以来,注入的液体就会稀释到很小的浓度。尽管存在着透水通道,在记载的模型中,注入的压裂液体无论是在压裂期间或是长时期内并没有达到近地表含水层。因此,压裂液体通过地底下从深层页岩气层上升到地表对浅层地下水的影响可能性很小。

Resumo

A produção de gás a partir de formações xistosas por fraturamento hidráulico levantou a preocupação acerca dos efeitos na qualidade da água doce subterrânea. A migração dos fluidos injetados pelo fraturamento hidráulico em direção à superfície foi investigada na Bacia do Norte da Alemanha com base na litologia padrão conhecida. Incluiu casos com percursos de fluxo preferencial, tais como zonas de falha permeáveis e redes de fraturas. Na simulação do escoamento e transporte de massa foram aplicadas condicionantes conservativas desencadeadas por uma fronteira de alta pressão de até 50 MPa de pressão acrescida. Os resultados mostram não haver migração significativa de fluidos durante a pressurização para um caso com rochas de cobertura não perturbadas e um máximo de 41 m de transporte vertical no seio da zona de falha permeável. As fraturas abertas, se presentes, controlam fortemente o campo de fluxo e a migração; nestas condições, o transporte vertical de fluidos de fraturamento hidráulico atinge até 200 m durante a simulação de fraturamento hidráulico. O transporte a longo prazo da água injetada foi simulado para 300 anos. O fluido de fraturamento hidráulico sobe verticalmente até 485 m no seio da zona de falha devido à flutuabilidade. Progressivamente, é transportado horizontalmente no seio de camadas de arenito, seguindo a direção de fluxo natural da água subterrânea. A longo prazo, os fluidos injetados são diluídos até baixas concentrações. Neste modelo, apesar da presença de percursos permeáveis, os fluidos de fraturamento hidráulico não se aproximaram dos aquíferos superficiais, quer durante o fraturamento hidráulico, quer a longo prazo. Em consequência, é baixa a probabilidade de impactos gerados na água subterrânea pouco profunda pela subida até à superfície através do meio subterrâneo dos fluidos de fraturamento hidráulico desde a formação profunda de xistos de gás.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig 10
Fig. 11

Similar content being viewed by others

References

  • Bai B, Goodwin S, Carlson K (2013) Modeling of frac flowback and produced water volume from Wattenberg oil and gas field. J Pet Sci Eng 108:383–392

    Article  Google Scholar 

  • Baltes B (1998) Entwicklung und Anwendung analytischer Methoden zur Eignungsuntersuchung der Verbringung bergbaufremder Rückstände in dauerhaft offene Grubenräume im Festgestein [Development and application of analytical methods for aptitude testing of the underground stowage of non-mining waste in permanently open mine excavations in consolidated rock]. Fachband 3: Hydraulische Daten und Stofftransport. 140/3, Gesellschaft für Anlagensicherheit und Reaktorsicherheit, GRS, Berlin

  • Baraka-Lokmane S (2002) A new resin impregnation technique for characterising fracture geometry in sandstone cores. Int J Rock Mech Min Sci 39:815–823

    Article  Google Scholar 

  • Bense VF, Gleeson T, Loveless SE, Bour O, Scibek J (2013) Fault zone hydrogeology. Earth Sci Rev 127:171–192

  • Bradley EE, Boutt D, Goodwin LB (2011) Damage zones and microcrack formation associated with laboratory produced extension fractures. AGU Fall Meeting Abstracts 12/2011, AGU, Washington, DC

  • Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24:1025–1028

  • Chesnaux R, Dal Soglio L, Wendling G (2013) Modelling the impacts of shale gas extraction on groundwater and surface water resources, GeoMontreal 2013, the 66th Canadian Geotechnical Conference and the 11th Joint CGS/IAH-CNC Groundwater Conference, Montreal, 29 September–03 October 2013

  • Cilona A, Aydin A, Johnson NM (2015) Permeability of a fault zone crosscutting a sequence of sandstones and shales and its influence on hydraulic head distribution in the Chatsworth Formation, California, USA. Hydrogeol J 23:405–419

    Article  Google Scholar 

  • Considine T, Watson R, Considine N, Martin N (2012) Environmental impacts during Marcellus shale gas drilling: causes, impacts, and remedies. Report 2012-1, Shale Resources and Society Institute, Buffalo, NY

  • Dannwolf U, Heckelsmüller A (2014) Environmental impacts of hydraulic fracturing related to the exploration and exploitation of unconventional natural gas, in particular of shale gas,  part 2 – groundwater monitoring concept, fracking chemicals registry, disposal of flowback, current state of research on emissions/climate balance, induced seismicity, impacts on the ecosystem, the landscape and biodiversity. Report on behalf of the Federal Environmental Agency, Germany

  • Darrah TH, Vengosh A, Jackson RB, Warner NR, Poreda RJ (2014) Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales. Proc Natl Acad Sci 111(39):14076–14081

    Article  Google Scholar 

  • Davies RJ, Almond S, Ward RS, Jackson RB, Adams C, Worrall F, Herringshaw LG, Gluyas JG, Whitehead MA (2014) Oil and gas wells and their integrity: implications for shale and unconventional resource exploitation. Mar Petrol Geol 56(Sept2014):239–254

  • Engelder T, Cathles LM, Bryndzia LT (2014) The fate of residual treatment water in gas shale. J Unconv Oil Gas Resour 7(0):33–48

    Article  Google Scholar 

  • Ewen C, Borchardt D, Richter S, Hammerbach R (2012) Hydrofracking risk assessment: study concerning the safety and environmental comparability of hydrofracking for natural gas production from unconventional reservoirs (executive summary). Study Status Conference, Berlin, 6–7 March 2012

  • Faulkner D, Jackson C et al. (2010) A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J Struct Geol 32(11):1557–1575

  • Fein E, Storck R, Klinge H, Schelkes K, Wollrath J (2001) The transport model for the safety case of the Konrad Repository and supporting investigations, 4th GEOTRAP, Confidence in Models of Radionuclide Transport for Site-Specific Assessments Workshop, Carlsbad, NM, June 1999, pp 129–144

  • Gassiat C, Gleeson T, Lefebvre R, McKenzie J (2013) Hydraulic fracturing in faulted sedimentary basins: numerical simulation of potential contamination of shallow aquifers over long time scales. Water Resour Res 49:8310–8327

    Article  Google Scholar 

  • Hart D (2016) A comparison of fracture transmissivities in granite water wells before and after hydrofracturing. Hydrogeol J 24:21–33

    Article  Google Scholar 

  • Herrick D (2000) Hard rock frack’n. Water Well J 2000:40–42

    Google Scholar 

  • Hesshaus A, Houben G, Kringel R (2013) Halite clogging in a deep geothermal well: geochemical and isotopic characterisation of salt origin. Phys Chem Earth 64:127–139

    Article  Google Scholar 

  • Himmelsbach T, Shao H, Wieczorek K, Flach D, Schuster K, Alheid H-J, Liou T-S, Bartlakowski J, Krekler T (2003) Effective field parameter, EFP. Nagra NTB report, Nagra, Wettingen, Switzerland

  • Howarth RW, Ingraffea A, Engelder T (2011) Natural gas: should fracking stop? 1237. Nature 477(7364):271–275

    Article  Google Scholar 

  • Ingraffea AR, Wells MT, Santoro RL, Shonkoff SBC (2014) Assessment and risk analysis of casing and cement impairment in oil and gas wells in Pennsylvania, 2000–2012. Proc Natl Acad Sci 111(30):10955–10960

    Article  Google Scholar 

  • Jackson RB, Vengosh A, Darrah TH, Warner NR, Down A, Poreda RJ, Osborn SG, Zhao K, Karr JD (2013) Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction. Proc Natl Acad Sci 110(28):11250–11255

    Article  Google Scholar 

  • Kell S (2011) State oil and gas agency groundwater investigations and their role in advancing regulatory reforms: a two-state review: Ohio and Texas. Ground Water Protection Council, Oklahoma City, OK

  • Klimczak C, Schultz RA, Parashar R, Reeves DM (2010) Cubic law with aperture-length correlation: implications for network scale fluid flow. Hydrogeol J 18(4):851–862

  • Klinge H (1991) Zur Salinität von Tiefenwässern, Band 1 [On the salinity of deep groundwaters, vol 1]. BGR-Bericht 108262. Bundesanstalt für Geowissenschaften und Rohstoffe, Hanover, Germany

  • Klinge H, Boehme J, Grissemann C, Houben G, Ludwig R-R, Rübel A, Schelkes K, Schildknecht F, Suckow A, (2007) Description of the Gorleben site, part 1: hydrogeology of the overburden of the Gorleben salt dome. Bundesanstalt für Geowissenschaften und Rohstoffe, Hanover, Germany

  • Lemke D, Elbracht J (2008) Grundwasserneubildung in Niedersachsen: ein Vergleich der Methoden Dörhöfer & Josopait und GROWA06V2 [Groundwater recharge in Lower Saxony: a comparison of the methods Dörhöfer & Josopait and GROWA06V2]. GeoBerichte 10, Landesamt für Bergbau, Energie und Geologie, Hanover, Germany

  • Littke R, Bayer U, Gajewski D, Nelskamp S (2008) Dynamics of complex intracontinental basins: the central european basin system. Springer, Berlin Heidelberg, pp 16–34

  • Magri F, Bayer U et al. (2005) Fluid-dynamics driving saline water in the North East German Basin. Int J Earth Sci 94(5):1056–1069

  • Meiners HG et al. (2012) Environmental impacts of fracking related to exploration and exploitation of unconventional natural gas deposits risk assessment, recommendations for action and evaluation of relevant Existing Legal Provisions and Administrative Structures. Report on behalf of the Federal Environmental Agency, Germany

  • Müller EP, Papendieck G (1975) Zur Verteilung, Genese und Dynamik von Tiefenwaessern unter besonderer Beruecksichtigung des Zechsteins [On the distribution, genesis, and dynamics of deep groundwaters with particular regard to the Zechstein]. Z Geol Wiss 3(2):167–196

    Google Scholar 

  • Myers T (2012) Potential contaminant pathways from hydraulically fractured shale to aquifers. Ground Water 50(6):872–882

    Article  Google Scholar 

  • Reagan MT, Moridis GJ, Keen ND, Johnson JN (2015) Numerical simulation of the environmental impact of hydraulic fracturing of tight/ shale gas reservoirs on near-surface groundwater: background, base cases, shallow reservoirs, short-term gas, and water transport. Water Resour Res 51:2543–2573

    Article  Google Scholar 

  • Reutter E (2011) Hydrostratigraphische Gliederung Niedersachsens [Hydrostratigraphical classification of Lower Saxony]. Landesamt für Bergbau, Energie und Geologie, Hanover, Germany

  • Reyer D, Bauer JF, Philipp SL (2012) Fracture systems in normal fault zones crosscutting sedimentary rocks, Northwest German Basin. J Struct Geol 45:38–51

    Article  Google Scholar 

  • Schwartz MO (2015) Modelling the hypothetical methane-leakage in a shale-gas project and the impact on groundwater quality. Environ Earth Sci 73(8):4619–4632

    Article  Google Scholar 

  • Saiers JE, Barth E (2012) Discussion of papers, comments on: “Potential contaminant pathways from hydraulically fractured shale to aquifers” by T. Myers. Ground Water 50(6):826–828

    Article  Google Scholar 

  • Sauter M, Helming R, Schetelig K (2012) Abschätzung der Auswirkungen von Fracking-Maßnahmen auf das oberflächennahe Grundwasser: Generische Charakterisierung und Modellierung [Assessment of impacts of fracking on near-surface groundwater: generic characterization and modeling]. Gutachten im Rahmen des InfoDialogs Fracking der Exxon Mobil Production Deutschland, Hanover, Germany

  • Siegel DI, Azzolina NA, Smith BJ, Perry AE, Bothun RL (2015) Methane concentrations in water wells unrelated to proximity to existing oil and gas wells in northeastern Pennsylvania. Environ Sci Technol 49(7):4106–4112

    Article  Google Scholar 

  • Sippel J (2009) The paleostress history of the Central European Basin System. GFZ scientific technical report STR09/06. Deutsches GeoForschungsZentrum, Potsdam, Germany. doi: 10.2312/GFZ.b103-09069

  • Snow DT (1968) Rock fracture spacings, openings, and porosities. Proc Am Soc Civ Eng 94:73–91

  • Tesmer M, Möller P, Wieland S, Jahnke C, Voigt H, Pekdeger A (2007) Deep reaching fluid flow in the North East German Basin: origin and processes of groundwater salinisation. Hydrogeol J 15(7):1291–1306

    Article  Google Scholar 

  • Tillner E, Kempka T, Nakaten B, Kühn M (2013) Brine migration through fault zones: 3D numerical simulations for a prospective CO2 storage site in northeast Germany. Int J Greenhouse Gas Control 19:689–703

    Article  Google Scholar 

  • Thompson AM (2010) Induced fracture detection in the Barnett Shale, Ft. Worth Basin, Texas, University of Oklahoma, Norman, OK

  • US EPA (2015) Assessment of the potential impacts of hydraulic fracturing for oil and gas on drinking water resources. External review draft, EPA/600/R-15/047, US EPA, Washington, DC

  • Vidic RD, Brantley SL, Vandenbossche JM, Yoxtheimer D, Abad JD (2013) Impact of shale gas development on regional water quality. Science 340(6134):1235009. doi:10.1126/science.1235009

    Article  Google Scholar 

  • Warner NR, Jackson RB, Darrah TH, Osborn SG, Down A, Zhao K, White A, Vengosh A (2012) Geochemical evidence for possible natural migration of Marcellus formation brine to shallow aquifers in Pennsylvania. Proc Natl Acad Sci U S A 109(30):11961–11966

    Article  Google Scholar 

  • Watson TL, Bachu S (2007) Evaluation of the potential for gas and CO2 leakage along wellbores. SPE 106817, E&P Environmental and Safety Conference, Galveston, TX, 5–7 March 2007

  • Wixwat T (2009) Mögliche Auswirkungen einer Klimaänderung auf die Grundwasserneubildung in Niedersachsen [Potential impacts of climate change on the groundwater recharge in Lower Saxony]. GeoBerichte 12, GeoBerichte, Hanover, Germany

  • Wolfgramm M, Thorwart K, Rauppach K, Brandes J (2011) Zusammensetzung, Herkunft und Genese geothermaler Tiefengrundwässer im Norddeutschen Becken (NDB) und deren Relevanz für die geothermische Nutzung [Origin, genesis and composition of deep geothermal groundwaters in the North German Basin (NGB) and their relevance for geothermal energy use]. Z Geol Wiss 339( 3–4):173–193

  • Yielding G, Freeman B, Needham DT (1997) Quantitative fault seal prediction. AAPG Bull 81(6):897–917

Download references

Acknowledgements

This work was conducted as part of the project NiKo (https://www.bgr.bund.de/DE/Themen/Energie/Projekte/Laufend/NIKO/NIKO_projektbeschreibung.html) executed by the Federal Institute for Geosciences and Natural Resources, Germany (BGR) on behalf of the Federal Ministry for Economic Affairs and Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Pfunt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfunt, H., Houben, G. & Himmelsbach, T. Numerical modeling of fracking fluid migration through fault zones and fractures in the North German Basin. Hydrogeol J 24, 1343–1358 (2016). https://doi.org/10.1007/s10040-016-1418-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1418-7

Keywords

Navigation