Skip to main content
Log in

Structural insights into human GPCR protein OA1: a computational perspective

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Human ocular albinism type 1 protein (OA1)—a member of the G-protein coupled receptor (GPCR) superfamily—is an integral membrane glycoprotein expressed exclusively by intracellular organelles known as melanocytes, and is responsible for the proper biogenesis of melanosomes. Mutations in the Oa1 gene are responsible for the disease ocular albinism. Despite its clinical importance, there is a lack of in-depth understanding of its structure and mechanism of activation due to the absence of a crystal structure. In the present study, homology modeling was applied to predicting OA1 structure following thorough sequence analysis and secondary structure predictions. The predicted model had the signature residues and motifs expected of GPCRs, and was used for carrying out molecular docking studies with an endogenous ligand, l-DOPA and an antagonist, dopamine; the results agreed quite well with the available experimental data. Finally, three sets of explicit molecular dynamics simulations were carried out in lipid bilayer, the results of which not only confirmed the stability of the predicted model, but also helped witness some differences in structural features such as rotamer toggle switch, helical tilts and hydrogen bonding pattern that helped distinguish between the agonist- and antagonist-bound receptor forms. In place of the typical “D/ERY”-motif-mediated “ionic lock”, a hydrogen bond mediated by the “DAY” motif was observed that could be used to distinguish the agonist and antagonist bound forms of OA1. In the absence of a crystal structure, this study helped to shed some light on the structural features of OA1, and its behavior in the presence of an agonist and an antagonist, which might be helpful in the future drug discovery process for ocular albinism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Schöneberg T, Schulz A, Gudermann T (2002) The structural basis of G-protein-coupled receptor function and dysfunction in human diseases. Rev Physiol Biochem Pharmacol 144:143–227

    Google Scholar 

  2. Lundstrom K (2009) An overview on GPCRs and drug discovery: structure-based drug design and structural biology on GPCRs. Methods Mol Biol 552:51–66

    Article  CAS  Google Scholar 

  3. Wilson S, Bergsma D (2000) Orphan G-protein coupled receptors: novel drug targets for the pharmaceutical industry. Drug Des Discov 17:105–114

    CAS  Google Scholar 

  4. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  CAS  Google Scholar 

  5. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  CAS  Google Scholar 

  6. Ballesteros J, Palczewski K (2001) G protein-coupled receptor drug discovery: implications from the crystal structure of rhodopsin. Curr Opin Drug Discov Dev 4:561–574

    CAS  Google Scholar 

  7. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS et al (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  CAS  Google Scholar 

  8. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P et al (2011) Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature 469:175–180

    Article  CAS  Google Scholar 

  9. Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D et al (2011) Structure and function of an irreversible agonist-β(2) adrenoceptor complex. Nature 469:236–240

    Article  CAS  Google Scholar 

  10. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY et al (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217

    Article  CAS  Google Scholar 

  11. Murakami M, Kouyama T (2008) Crystal structure of squid rhodopsin. Nature 453:363–367

    Article  CAS  Google Scholar 

  12. Wu B, Chien EY, Mol CD, Fenalti G, Liu W et al (2010) Structures of the CXCR4 chemokine GPCR with small molecule and cyclic peptide antagonists. Science 330:1066–1071

    Article  CAS  Google Scholar 

  13. Choe HW, Kim YJ, Park JH, Morizumi T, Pai EF et al (2011) Crystal structure of metarhodopsin II. Nature 471:651–655

    Article  CAS  Google Scholar 

  14. Patny A, Desai PV, Avery MA (2006) Homology modelling of G-protein coupled receptors and implications in drug design. Curr Med Chem 13:1667–1691

    Article  CAS  Google Scholar 

  15. Kanagarajadurai K, Malini M, Bhattacharya A, Panicker M, Sowdhamini R (2009) Molecular modeling and docking studies of human 5-hydroxytryptamine 2A (5-HT2A) receptor for the identification of hotspots for ligand binding. Mol BioSys 5:1877–1888

    Article  CAS  Google Scholar 

  16. Miedlich SU, Gama L, Seuwen K, Wolf RM, Breitwieser GE (2004) Homology modeling of the transmembrane domain of the human calcium sensing receptor and localization of an allosteric binding site. J Biol Chem 279:7254–7263

    Article  CAS  Google Scholar 

  17. Dastmalchi S, Church WB, Morris MB (2008) Modelling the structures of G protein-coupled receptors aided by three-dimensional validation. BMC Bioinforma 9:S14

    Article  Google Scholar 

  18. Niv MY, Skrabanek L, Filizola M, Weinstein H (2006) Modeling activated states of GPCRs: the rhodopsin template. J Comput Aided Mol Des 20:437–448

    Article  CAS  Google Scholar 

  19. Costanzi S (2008) On the applicability of GPCR homology models to computer-aided drug discovery: a comparison between in silico and crystal structures of the β2-adrenergic receptor. J Med Chem 51:2907–2914

    Article  CAS  Google Scholar 

  20. Lavecchia A, Cosconati S, Novellino E (2005) Architecture of the human urotensin II receptor: comparison of the binding domains of peptide and non-peptide urotensin II agonists. J Med Chem 48:2480–2492

    Article  CAS  Google Scholar 

  21. Periole X, Weinstein H (2002) Key issues in computational simulation of GPCR function. J Comput Aided Mol Des 16:841–853

    Article  Google Scholar 

  22. Ivetac A, Sansom MS (2008) Molecular dynamics simulations and membrane protein structure quality. Eur Biophys J 37:403–409

    Article  CAS  Google Scholar 

  23. Fan H, Mark AE (2004) Refinement of homology-based protein structures by molecular dynamics simulation techniques. Protein Sci 13:211–220

    Article  CAS  Google Scholar 

  24. Kobilka B, Schertler GF (2008) New G-protein-coupled receptor crystal structures: insights and limitations. Trends Pharmacol Sci 29:79–83

    Article  CAS  Google Scholar 

  25. Klein-Seetharaman J (2002) Dynamics in rhodopsin. ChemBioChem 3:981–986

    Article  CAS  Google Scholar 

  26. Vilardaga JP, Bünemann M, Krasel C, Castro M, Lohse MJ (2003) Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nat Biotechnol 21:807–812

    Article  CAS  Google Scholar 

  27. Shen B, Samaraweera P, Rosenberg B, Orlow SJ (2001) Ocular albenism type I: more than meets the eye. Pigment Cell Res 14:243–248

    Article  CAS  Google Scholar 

  28. Incerti B, Cortese K, Pizzigoni A, Surace EM, Varani S et al (2000) Oa1 knock-out: new insights on the pathogenesis of ocular albinism type I. Hum Mol Genet 9:2781–2788

    Article  CAS  Google Scholar 

  29. Bassi MV, Schiaffino MV, Renieri A, De Nigris F, Galli L et al (1995) Cloning of the gene for ocular albinism type I from the distal short arm of the X chromosome. Nat Genet 10:13–19

    Article  CAS  Google Scholar 

  30. Schiaffino MV, Bassi MV, Galli L, Renieri A, Bruttini M et al (1995) Analysis of the OA1 gene reveals mutations in only one-third of the patients with X linked ocular albinism. Hum Mol Genet 4:2319–2325

    Article  CAS  Google Scholar 

  31. Schiaffino MV, d’Addio M, Alloni A, Baschirotto C, Valetti C et al (1999) Ocular albinism: evidence for a defect in an intracellular signal transduction system. Nat Genet 23:108–112

    Article  CAS  Google Scholar 

  32. Schiaffino MV, Tacchetti C (2005) The Ocular Albinism type I (OA1) protein and the evidence for an intracellular signal transduction system involved in melanosome biogenesis. Pigment Cell Res 18:227–233

    Article  CAS  Google Scholar 

  33. Innamorati G, Piccirillo R, Bagnato P, Palmisano I, Schiaffino MV (2006) The melanosome/lysosomal protein OA1 has properties of a G protein coupled receptor. Pigment Cell Res 19:125–135

    Article  CAS  Google Scholar 

  34. d’Addio M, Pizzigoni A, Bassi MT, Baschirotto C, Valetti C et al (2000) Defective intracellular transport and processing of OA1 is a major cause of ocular albinism type 1. Human Mol Genet 9:3011–3018

    Article  Google Scholar 

  35. Palmisano I, Bagnato P, Palmigiano A, Innamorati G, Rotondo G et al (2008) The ocular albinism type 1 protein, an intracellular G protein coupled receptor, regulates melanosome transport in pigment cells. Human Mol Genet 17:3487–3501

    Article  CAS  Google Scholar 

  36. Lopez VM, Decatur CL, Stamer WD, Lynch RM, MacKay BS (2008) l-DOPA is an endogenous ligand for OA1. PLoS Biol 6:e236

    Article  Google Scholar 

  37. Bairoch A, Apweiler R (1998) The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1998. Nucleic Acids Res 26:38–42

    Article  CAS  Google Scholar 

  38. Bateman A, Coin L, Durbin R, Finn RD, Hollich V et al (2004) The Pfam protein families database. Nucleic Acids Res 32:138–141

    Article  Google Scholar 

  39. Altschul SF, Madden TL, Schäffer AA (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  40. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  41. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  Google Scholar 

  42. Rost B, Yachdav G, Liu J (2004) The PredictProtein Server. Nucleic Acids Res 32:W321–W326

    Article  CAS  Google Scholar 

  43. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS et al (2007) High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  CAS  Google Scholar 

  44. Okada T, Sugihara M, Bondar AN, Elstner M, Entel P et al (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J Mol Biol 342:571–583

    Article  CAS  Google Scholar 

  45. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Series 41:95–98

    CAS  Google Scholar 

  46. Šali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  Google Scholar 

  47. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  48. Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

    Article  CAS  Google Scholar 

  49. Schrödinger Suite (2009) QM-polarized ligand docking protocol; Glide version 5.5; Jaguar version 7.6; QSite version 5.5. Schrödinger, LLC, New York, NY

  50. Chung JY, Hah JM, Cho AE (2009) Correlation between performance of QM/MM docking and simple classification of binding sites. J Chem Inf Model 49:2382–2387

    Article  CAS  Google Scholar 

  51. Hess B, Kutzner C, van der Spoel D, Lindahl EJ (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Chem Theor Comput 4:435–447

    Article  CAS  Google Scholar 

  52. Schuettelkopf AW, van Aalten DMF (2004) PRODRG—a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica D60:1355–1363

    CAS  Google Scholar 

  53. Kandt C, Ash WL, Tieleman DP (2007) Setting up and running molecular dynamics simulations of membrane proteins. Methods 41:475–488

    Article  CAS  Google Scholar 

  54. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  Google Scholar 

  55. Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular simulations. J Chem Theor Comput 4:116–122

    Article  CAS  Google Scholar 

  56. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Prot Eng 8:127–134

    Article  CAS  Google Scholar 

  57. XMGRACE: http://plasma-gate.weizmann.ac.il/Grace/

  58. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  59. DeLano WL (2003) The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA

    Google Scholar 

  60. Schnur RE, Gao M, Wick PA, Keller M, Benke PJ et al (1998) OA1 mutations and deletions in X-linked ocular albinism. Am J Hum Genet 62:800–809

    Article  CAS  Google Scholar 

  61. Unal H, Jagannathan R, Bhat MB, Karnik SS (2010) Ligand-specific conformation of extracellular loop-2 in the angiotensin II type 1 receptor. J Biol Chem 285:16341–16350

    Article  CAS  Google Scholar 

  62. Conner M, Hawtin SR, Simms J, Wootten D, Lawson Z et al (2007) Systematic analysis of the entire second extracellular loop of the V(1a) vasopressin receptor: key residues, conserved throughout a G-protein-coupled receptor family, identified. J Biol Chem 282:17405–17412

    Article  CAS  Google Scholar 

  63. Dunham TD, Farrens DL (1999) Conformational changes in rhodopsin. Movement of helix f detected by site-specific chemical labeling and fluorescence spectroscopy. J Biol Chem 274:1683–1690

    Article  CAS  Google Scholar 

  64. Knierim B, Hofmann KP, Ernst OP, Hubbell WL (2007) Sequence of late molecular events in the activation of rhodopsin. Proc Natl Acad Sci USA 104:20290–20295

    Article  CAS  Google Scholar 

  65. Kobilka BK (2007) G protein coupled receptor structure and activation. Biochim Biophys Acta 1768:794–807

    Article  CAS  Google Scholar 

  66. Kobilka BK (2002) Agonist-induced conformational changes in the beta2 adrenergic receptor. J Pept Res 60:317–321

    Article  CAS  Google Scholar 

  67. Shi L, Liapakis G, Xu R, Guarnieri F, Ballesteros JA et al (2002) Beta2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. J Biol Chem 277:40989–40996

    Article  CAS  Google Scholar 

  68. Bhattacharya S, Hall SE, Li H, Vaidehi N (2008) Ligand-stabilized conformational states of human β2 adrenergic receptor: insight into G-protein-coupled receptor activation. Bio Phys J 94:2027–2042

    CAS  Google Scholar 

  69. Bhattacharya S, Hall SE, Vaidehi N (2008) Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors. J Mol Biol 382:539–555

    Article  CAS  Google Scholar 

  70. Farahbakhsh ZT, Hideg K, Hubbell WL (1993) Photoactivated conformational-changes in rhodopsin—a time-resolved spin-label study. Science 262:1416–1419

    Article  CAS  Google Scholar 

  71. Hubbell WL, Cafiso D, Altenbach C (2000) Identifying conformational changes with site-directed spin labeling. Nature Struct Biol 7:735–739

    Article  CAS  Google Scholar 

  72. Langen R, Cai K, Altenbach C, Khorana HG, Hubbell WL (1999) Structural features of the C-terminal domain of bovine rhodopsin: a site directed spin-labeling study. Biochemistry 38:7918–7924

    Article  CAS  Google Scholar 

  73. Farrens D, Altenbach C, Yang K, Hubbell WL, Khorana HG (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274:768–770

    Article  CAS  Google Scholar 

  74. Crozier PS, Stevens MJ, Forrest LR, Woolf TB (2003) Molecular dynamics simulations of dark-adapted rhodopsin in an explicit membrane bilayer: coupling between local retinal and larger scale conformational change. J Mol Biol 333:493–514

    Article  CAS  Google Scholar 

  75. Vogel R, Mahalingam M, Lüdeke S, Huber T, Siebert F et al (2008) Functional role of the “Ionic Lock”—an interhelical hydrogen-bond network in family a heptahelical receptors. J Mol Biol 380:648–655

    Article  CAS  Google Scholar 

  76. Ballesteros JA, Jensen AD, Liapakis G, Rasmussen SGF, Shi L et al (2001) Activation of the β2-adrenergic receptor involves disruption of an ionic lock between cytoplasmic ends of transmembrane segments 3 and 6. J Biol Chem 276:29171–29177

    Article  CAS  Google Scholar 

  77. Dror RO, Arlow DH, Borhani DW, Jensen MØ, Piana S et al (2009) Identification of two distinct inactive conformations of the beta2-adrenergic receptor reconciles structural and biochemical observations. Proc Natl Acad Sci USA 106:4689–4694

    Article  CAS  Google Scholar 

  78. Romo TD, Grossfield A, Pitman MC (2010) Concerted interconversion between ionic lock substates of the beta(2) adrenergic receptor revealed by microsecond timescale molecular dynamics. Biophys J 98:76–84

    Article  CAS  Google Scholar 

  79. Sgourakis NG, Garcia AE (2010) The membrane complex between transducin and dark-state rhodopsin exhibits large-amplitude interface dynamics on the sub-microsecond timescale: insights from all-atom MD simulations. J Mol Biol 398:161–173

    Article  CAS  Google Scholar 

  80. Fanelli F, De Benedetti PG (2006) Inactive and active states and supramolecular organization of GPCRs: insights from computational modeling. J Comput Aided Mol Des 20:449–461

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.G., U.B.S. and R.R.J. gratefully acknowledge the Department of Information Technology (DIT), Government of India, New Delhi, for providing financial support. This work was performed using the “Bioinformatics Resources and Applications Facility (BRAF)” at C-DAC, Pune, funded by DIT, New Delhi. A.G.K. and A.S.K. gratefully acknowledge funding support from IIT Madras, Department of Science and Technology (DST) and Department of Biotechnology (DBT), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gopala Krishna Aradhyam or Rajendra Joshi.

Supplementary material available

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(PDF 235 kb)

Supplementary Fig. 2

(PDF 267 kb)

Supplementary Fig. 3

(PDF 103 kb)

Supplementary Fig. 4

(PDF 252 kb)

Supplementary Table 1

(PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, A., Sonavane, U., Andhirka, S.K. et al. Structural insights into human GPCR protein OA1: a computational perspective. J Mol Model 18, 2117–2133 (2012). https://doi.org/10.1007/s00894-011-1228-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1228-8

Keywords

Navigation