Skip to main content
Log in

QSTR with extended topochemical atom (ETA) indices. VI. Acute toxicity of benzene derivatives to tadpoles (Rana japonica)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Quantitative structure-toxicity relationship (QSTR) studies have proved to be a valuable approach in research on the toxicity of organic chemicals for ranking chemical substances with respect to their potential hazardous effects on living systems. With this background, we have modeled here the acute lethal toxicity of 51 benzene derivatives with recently introduced extended topochemical atom (ETA) indices [Roy and Ghosh, Internet Electron J Mol Des 2:599–620 (2003)]. We also compared the ETA relations with non-ETA models derived from different topological indices (Wiener W, Balaban J, flexibility index ϕ, Hosoya Z, Zagreb, molecular connectivity indices, E-state indices and kappa shape indices) and physicochemical parameters (AlogP98, MolRef,H_bond_donor and H_bond_acceptor). Genetic function approximation (GFA) and factor analysis (FA) were used as the data-preprocessing steps for the development of final multiple linear regression (MLR) equations. Principal-component regression analysis (PCRA) was also used to extract the total information from the ETA/non-ETA/combined matrices. All the models developed were cross-validated using leave-one-out (LOO) and leave-many-out techniques. The summary of the statistics of the best models is as follows: (1) FA-MLR: ETA model- Q 2 (LOO)=0.852, R 2=0.894; non-ETA model- Q 2=0.782, R 2=0.835; ETA + non-ETA model-Q 2 =0.815, R 2=0.859. (2) GFA-MLR: ETA model-Q 2 =0.847, R 2=0.915; non-ETA model-Q 2 =0.863, R 2=0.898; ETA + non-ETA model-Q 2 =0.859, R 2=0.893. 3. PCRA: ETA model-Q 2 =0.864, R 2=0.901; non-ETA model- Q 2=0.866, R 2=0.922; ETA + non-ETA model-Q 2=0.846, R 2=0.890. The statistical quality of the ETA models is comparable to that of non-ETA models. Again, use of non-ETA descriptors in addition to ETA descriptors does not increase the statistical acceptance of the relations significantly. The predictive potential of these models was better than that of the previously reported models using physicochemical parameters [Huang et al., Chemosphere 53:963–970 (2003)]. The relations from ETA descriptors suggest a parabolic dependence of the toxicity on molecular size. Furthermore, the toxicity increases with functionality contribution of chloro substituent and decreases with those of methoxy, hydroxy, carboxy and amino groups. This study suggests that ETA parameters are sufficiently rich in chemical information to encode the structural features that contribute significantly to the acute toxicity of benzene derivatives to Rana japonica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kavlock RJ, Daston GP, Derosa C, Fenner-Crisp P, Gray LE, Kaattari S, Lucier G, Luster M, Mac MJ, Maczka C, Miller R, Moore J, Rolland R, Csott G, Sheehan DM, Sinks T, Tilson HA (1996) Environ Health Perspect 104:715–740

    Article  PubMed  Google Scholar 

  2. Sanderson H, Jonson DJ, Reitsma T, Brain RA, Wilson CJ, Solomon KR (2004) Regul Toxicol Pharmacol 39:158–183

    Article  PubMed  CAS  Google Scholar 

  3. McKinney JD, Richard A, Waller C, Newman MC, Gerberick F (2000) Toxicol Sci 56:8–17

    Article  PubMed  CAS  Google Scholar 

  4. Comber MH, Walker JD, Watts C, Hermens J (2003) Environ Toxicol Chem 22:1822–1828

    Article  PubMed  CAS  Google Scholar 

  5. Russom CL, Anderson EB, Greenwood BE, Pilli A (1991) Sci Total Environ 109–110:667–670

  6. Ren S (2002) Environ Toxicol 17:119–127

    Article  PubMed  CAS  Google Scholar 

  7. Rose K, Hall LH (2003) SAR QSAR Environ Res 14:113–129

    Article  PubMed  CAS  Google Scholar 

  8. Mazzatorta P, Benfenati E, Neagu CD, Gini G (2003) J Chem Inf Comput Sci 43:513–518

    Article  PubMed  CAS  Google Scholar 

  9. Vighi M, Gramatica P, Consolaro F, Todeschini R (2001) Ecotoxicol Environ Saf 49:206–220

    Article  PubMed  CAS  Google Scholar 

  10. Bask SC, Grunwald GD, Gute BD, Balasubramanian K, Opitz D (2000) J Chem Inf Comput Sci 40:885–890

    Article  PubMed  CAS  Google Scholar 

  11. Devillers J (2001) SAR QSAR Environ Res 11:397–417

    Article  PubMed  CAS  Google Scholar 

  12. Roy K, Ghosh G (2003) Internet Electron J Mol Des 2:599–620; http://www.biochempress.com

    Google Scholar 

  13. Roy K, Ghosh G (2004) J Chem Inf Comput Sci 44:559–567

    Article  PubMed  CAS  Google Scholar 

  14. Roy K, Ghosh G (2004) QSAR Comb Sci 23:99–108

    Article  CAS  Google Scholar 

  15. Roy K, Ghosh G (2004) QSAR Comb Sci 23:526–535

    Article  CAS  Google Scholar 

  16. Roy K, Ghosh G (2005) Bioorg Med Chem 13:1185–1194

    Article  PubMed  CAS  Google Scholar 

  17. Pal DK, Sengupta C, De AU (1988) Indian J Chem 27B:734–739

    Google Scholar 

  18. Pal DK, Sengupta C, De AU (1989) Indian J Chem 28B:261–267

    Google Scholar 

  19. Pal DK, Sengupta M, Sengupta C, De AU (1990) Indian J Chem 29B:451–454

    Google Scholar 

  20. Pal DK, Purkayastha SK, Sengupta C, De AU (1992) Indian J Chem 31B:109–114

    Google Scholar 

  21. Roy K, Pal DK, De AU, Sengupta C (1999) Indian J Chem 38B:664–671

    Google Scholar 

  22. Roy K, Pal DK, De AU, Sengupta C (2001) Indian J Chem 40B:129–135

    Google Scholar 

  23. Roy K, Saha A (2003) J Mol Model 9:259–270

    Article  CAS  Google Scholar 

  24. Roy K, Saha A (2003) Internet Electron J Mol Des 2:288–305; http://www.biochempress.com

    Google Scholar 

  25. Roy K, Saha A (2003) Internet Electron J Mol Des 2:475–491 http://www.biochempress.com

    Google Scholar 

  26. Roy K, Chakroborty S, Ghosh CC, Saha A (2004) J Indian Chem Soc 81:115–125

    CAS  Google Scholar 

  27. Huang, H, Wang X, Ou W, Zhao J, Shao Y, Wang L (2003) Chemosphere 53:963–970

    Article  PubMed  CAS  Google Scholar 

  28. Rogers D, Hopfinger AJ (1994) J Chem Inf Comput Sci 34:854–866

    Article  CAS  Google Scholar 

  29. Fan Y, Shi LM, Kohn KW, Pommier Y, Weinstein JN (2001) J Med Chem 44:3254–3263

    Article  PubMed  CAS  Google Scholar 

  30. Lewi PJ (1980) Multivariate data analysis in structure-activity relationships. In: Ariens EJ (ed) Drug design, vol 10. Academic Press, NY, pp 307–342

  31. Franke R, Gruska A (1995) Principal component and factor analysis. In: van de Waterbeemd H (ed) Chemometric methods in molecular design, vol 2. VCH, Weinheim, pp 113–163

  32. Cerius 2 Version 4.8 is a product of Accelrys Inc., San Diego, CA

  33. SPSS is statistical software of SPSS Inc., IL

  34. The GW-BASIC programs RRR98, KRETA1, KRETA2, KRPRES1 and KRPRES2 were developed by Kunal Roy and standardized using known data sets

  35. Snedecor GW, Cochran WG (1967) Statistical methods. Oxford and IBH Publishing Co Pvt Ltd, New Delhi, pp 381–418

    Google Scholar 

  36. Wold S, Eriksson L (1995) Statistical validation of QSAR results. In: van de Waterbeemd H (ed) Chemometric methods in molecular design. VCH, Weinheim, pp 312–317

    Google Scholar 

  37. Debnath AK (2001) Quantitative structure-activity relationship (QSAR): A versatile tool in drug design. In: Ghose AK, Viswanadhan VN (eds) Combinatorial library design and evaluation. Marcel Dekker, NY, pp 73–129

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, K., Ghosh, G. QSTR with extended topochemical atom (ETA) indices. VI. Acute toxicity of benzene derivatives to tadpoles (Rana japonica). J Mol Model 12, 306–316 (2006). https://doi.org/10.1007/s00894-005-0033-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0033-7

Keywords

Navigation