Skip to main content
Log in

Determining Rieske cluster reduction potentials

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The Rieske iron–sulfur proteins have reduction potentials ranging from −150 to +400 mV. This enormous range of potentials was first proposed to be due to differing solvent exposure or even protein structure. However, the increasing number of available crystal structures for Rieske iron–sulfur proteins has shown this not to be the case. Colbert and colleagues proposed in 2000 that differences in the electrostatic environment, and not structural differences, of a Rieske proteins are responsible for the wide range of reduction potentials observed. Using computational simulation methods and the newly determined structure of Pseudomonas sp. NCIB 9816-4 naphthalene dioxygenase Rieske ferredoxin (NDO-F9816-4), we have developed a model to predict the reduction potential of Rieske proteins given only their crystal structure. The reduction potential of NDO-F9816-4, determined using a highly oriented pyrolytic graphite electrode, was −150 ± 2 mV versus the standard hydrogen electrode. The predicted reduction potentials correlate well with experimentally determined potentials. Given this model, the effect of protein mutations can be evaluated. Our results suggest that the reduction potential of new proteins can be estimated with good confidence from 3D structures of proteins. The structure of NDO-F9816-4 is the most basic Rieske ferredoxin structure determined to date. Thus, the contributions of additional structural motifs and their effects on reduction potential can be compared with respect to this base structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, Yu L, Deisenhofer J (1997) Science 277:60–66

    Article  PubMed  CAS  Google Scholar 

  2. Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S, Jap BK (1998) Science 281:64–71

    Article  PubMed  CAS  Google Scholar 

  3. Carrell CJ, Zhang H, Cramer WA, Smith JL (1997) Structure 5:1613–1625

    Article  PubMed  CAS  Google Scholar 

  4. Lange C, Nett JH, Trumpower BL, Hunte C (2001) EMBO J 20:6591

    Article  PubMed  CAS  Google Scholar 

  5. Hunsicker-Wang LM, Heine A, Chen Y, Luna EP, Todaro T, Zhang YM, Williams PA, Mcree DE, Hirst J, Stout CD, Fee JA (2003) Biochemistry 42:7303

    Article  PubMed  CAS  Google Scholar 

  6. Ferraro D, Gakhar L, Ramaswamy S (2005) Biochem Biophys Res Commun 338:175–190

    Article  PubMed  CAS  Google Scholar 

  7. Ferraro DJ, Brown EN, Yu CL, Parales RE, Gibson DT, Ramaswamy S (2007) BMC Struct Biol 7:10

    Article  PubMed  CAS  Google Scholar 

  8. Ashikawa Y, Fujimoto Z, Noguchi H, Habe H, Omori T, Yamane H, Nojiri H (2006) Structure 14:1779–1789

    Article  PubMed  CAS  Google Scholar 

  9. Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Structure 9:125–132

    Article  PubMed  CAS  Google Scholar 

  10. Anderson GL, Williams J, Hille R (1992) J Biol Chem 267:23674

    PubMed  CAS  Google Scholar 

  11. Bönisch H, Schmidt CL, Schaefer G, Landstein R (2002) J Mol Biol 319:791

    Article  PubMed  CAS  Google Scholar 

  12. Carrell CJ, Zhang H, Cramer WA, Smith JL (1997) Structure 5:1613

    Article  PubMed  CAS  Google Scholar 

  13. Colbert CL, Couture MMJ, Eltis LD, Bolin JT (2000) Structure 8:1267–1278

    Article  PubMed  CAS  Google Scholar 

  14. Kolling DJ, Brunzelle JS, Lhee S, Crofts AR, Nair SK (2007) Structure 15:29–38

    Article  PubMed  CAS  Google Scholar 

  15. Nam J, Noguchi H, Fujimoto Z, Mizuno H, Ashikawa Y, Abo M, Fushinobu S, Kobashi N, Wakagi T, Iwata K, Yoshida T, Habe H, Yamane H, Omori T, Nojiri H (2005) Proteins 58:779–789

    Article  PubMed  CAS  Google Scholar 

  16. Stellwagen E (1978) Nature 275:73–74

    Article  PubMed  CAS  Google Scholar 

  17. Schlauder GG, Kassner RJ (1979) J Biol Chem 254:4110–4113

    PubMed  CAS  Google Scholar 

  18. Meyer J (2008) J Biol Inorg Chem 13:157–170

    Article  PubMed  CAS  Google Scholar 

  19. Zu Y, Bernardo SD, Yagi T, Hirst J (2002) Biochemistry 41:10056–10069

    Article  PubMed  CAS  Google Scholar 

  20. Zu Y, Couture M, Kolling D, Crofts A, Eltis L, Fee J, Hirst J (2003) Biochemistry 42:12400–12408

    Article  PubMed  CAS  Google Scholar 

  21. Schröter T, Hatzfeld OM, Gemeinhardt S, Korn M, Friedrich T, Ludwig B, Link TA (1998) Eur J Biochem 255:100–106

    Article  PubMed  Google Scholar 

  22. Denke E, Merbitz-Zahradnik T, Hatzfeld OM, Snyder CH, Link TA, Trumpower BL (1998) J Biol Chem 273:9085–9093

    Article  PubMed  CAS  Google Scholar 

  23. Moore GR, Pettigrew GW, Rogers NK (1986) Proc Natl Acad Sci USA 83:4998–4999

    Article  PubMed  CAS  Google Scholar 

  24. Langen R, Jensen GM, Jacob U, Stephens PJ, Warshel A (1992) J Biol Chem 267:25625–25627

    PubMed  CAS  Google Scholar 

  25. Stephens PJ, Jollie DR, Warshel A (1996) Chem Rev 96:2491–2513

    Article  PubMed  CAS  Google Scholar 

  26. Bugg TD, Ramaswamy S (2008) Curr Opin Chem Biol 12:1–7

    Article  CAS  Google Scholar 

  27. Couture MMJ, Colbert CL, Babini E, Rosell FI, Mauk AG, Bolin JT, Eltis LD (2001) Biochemistry 40:84–92

    Article  PubMed  CAS  Google Scholar 

  28. Suen WC (1991) Genetic and biochemical studies of the ferrdoxin TOL component of toluene dioxygenase from Pseudomonas putida FI. University of Iowa, Iowa City

    Google Scholar 

  29. Haigler BB, Gibson DT (1990) J Bacteriol 172:465–468

    PubMed  CAS  Google Scholar 

  30. Collaborative Computational Project Number 4 (1994) Acta Crystallogr D Biol Crystallogr 50:760–763

    Google Scholar 

  31. Powell HR (1999) Acta Crystallogr D Biol Crystallogr 55:1690–1695

    Article  PubMed  CAS  Google Scholar 

  32. Evans PR (1993) In: Data collection and processing. CCP4 study weekend, pp 114–122

  33. Read RJ (1999) Acta Crystallogr D Biol Crystallogr 55:1759–1764

    Article  PubMed  CAS  Google Scholar 

  34. Hamiltona, Rollett, Sparks (1965) Acta Crystallogr 18:129–130

    Google Scholar 

  35. Diederichs K, Karplus PA (1997) Nat Struct Biol 4:269–275

    Article  PubMed  CAS  Google Scholar 

  36. Weiss M, Hilgenfeld R (1997) J Appl Crystallogr 30:203–205

    Article  CAS  Google Scholar 

  37. Weiss M (2001) J Appl Crystallogr 34:130–135

    Article  CAS  Google Scholar 

  38. Murshudov G, Vagin A, Dodson E (1996) In: The refinement of protein structures. CCP4 study weekend, pp 93–104

  39. Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr D Biol Crystallogr 53:240–255

    Article  PubMed  CAS  Google Scholar 

  40. Pannu NJ, Murshudov GN, Lebedev A, Vagin AA, Wilson KS, Dodson EJ (1999) Acta Crystallogr D Biol Crystallogr 55:247–255

    Article  Google Scholar 

  41. Jones TA, Zou JY, Cowan SW, Kjelgaard M (1991) Acta Crystallogr A47:110–119

    CAS  Google Scholar 

  42. Kleywegt GJ, Zou JY, Kjeldgaard M, Jones TA (2001) In: Rossmann MG, Arnold E (eds) International tables for crystallography. Kluwer Academics Publishers, Dordrecht, pp 353–356, 366–367

  43. Lamzin VS, Wilson KS (1993) Acta Crystallogr D Biol Crystallogr 49:129–147

    Article  PubMed  CAS  Google Scholar 

  44. Lamzin VS, Wilson KS (1997) In: Carter C, Sweet B (eds) Methods in enzymology. Academic Press, San Diego, pp 269–305

  45. Lamzin VS, Perrakis A, Wilson KS (2001) In: Rossmann MG, Arnold E (eds) International tables for crystallography, vol F. Kluwer Academic Publishers, Dordrecht, pp 720–722

  46. Emsley P, Cowtan K (2004) Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  CAS  Google Scholar 

  47. Brown EN (2009) Rieske business: Rieske metal clusters in Rieske ferredoxins and Rieske dioxygenases. University of Iowa, Iowa City

  48. Bernstein FC, Koetzle TF, Williams GJB, Meyer JEF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) J Mol Biol 112:535–542

    Article  PubMed  CAS  Google Scholar 

  49. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  50. Berman HM, Henrick K, Nakamura H (2003) Nat Struct Biol 10:980

    Article  PubMed  CAS  Google Scholar 

  51. Wallace AC, Laskowski RA, Thorton JM (1995) Protein Eng 8:127–134

    Article  PubMed  CAS  Google Scholar 

  52. DeLano WL (2000) The PyMOL molecular graphics system, version 0.98. DeLano Scientific, San Carlos

    Google Scholar 

  53. Kleywegt GJ, Jones TA (1994) A super position. Biomedical Centre, Uppsala University, Sweden

    Google Scholar 

  54. Alexov E, Gunner M (1997) Biophys J 74:2075–2093

    Google Scholar 

  55. Georgescu RE, Alexov EG, Gunner MR (2002) Biophys J 83:1731–1748

    Article  PubMed  CAS  Google Scholar 

  56. Ullmann GM, Noodleman L, Case DA (2002) J Biol Inorg Chem 7:632–639

    Article  PubMed  CAS  Google Scholar 

  57. Rocchia W, Alexov E, B H (2001) J Phys Chem B 105:6507–6514

    Article  CAS  Google Scholar 

  58. Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B (2002) J Comp Chem 23:128–137

    Article  CAS  Google Scholar 

  59. R Development Core Team (2006) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  60. Iwata S, Saynovits M, Link TA, Michel H (1996) Structure 4:567–579

    Article  PubMed  CAS  Google Scholar 

  61. Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S (1998) Structure 6:571–586

    Article  PubMed  CAS  Google Scholar 

  62. Hoke KR, Cobb N, Armstrong FA, Hille R (2004) Biochemistry 43:1667–1674

    Article  PubMed  CAS  Google Scholar 

  63. Leggate EJ, Hirst J (2005) Biochemistry 44:7048–7058

    Article  PubMed  CAS  Google Scholar 

  64. Schmidt CL, Hatzfeld OM, Petersen A, Link TA, Schafe G (1997) Biochem Biophys Res Commun 234:283–287

    Article  PubMed  CAS  Google Scholar 

  65. Merbitz-Zahradnik T, Zwicker K, Nett J, Link T, Trumpower B (2003) Biochemistry 42:13637–13645

    Article  PubMed  CAS  Google Scholar 

  66. Zhang H, Carrell CJ, Huang D, Sled V, Ohnishi T, Smith JL, Cramer WA (1996) J Biol Chem 271:31360–31366

    Article  PubMed  CAS  Google Scholar 

  67. Link TA, Saynovits M, Assmann C, Iwata S, Ohnishi T, von Jagow G (1996) Eur J Biochem 237:71–75

    Article  PubMed  CAS  Google Scholar 

  68. Shao J (1997) Statistica Sinica 7:221–264

    Google Scholar 

  69. Gunner MR, Alexov E (2000) Biochim Biophys Acta 1458:63–87

    Article  PubMed  CAS  Google Scholar 

  70. Warshel A, Papazyan A (1998) Curr Opin Struct Biol 8:211–217

    Article  PubMed  CAS  Google Scholar 

  71. Warhsel A, Sharma PK, Kato M, Parson WW (2006) Biochim Biophys Acta 1764:1647–1676

    Google Scholar 

  72. Noodleman L, Normal JGJ, Osborne JH, Aizman A, Case DA (1985) J Am Chem Soc 107:3418–3426

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dan Ferraro, Adam Okerlund, Lokesh Gakhar, Chi-Li Yu, Johna Leddy, David Gibson, and Hans Eklund for their support, ideas, and assistance. We thank Elizabeth Kamp for her assistance in editing this manuscript. We would like to thank the Macromolecular Crystallography Group beamline ID14-1 at the European Synchrotron Radiation Facility for help with data collection. E.B. is a University of Iowa MSTP trainee and would like to acknowledge financial support through a fellowship from the University of Iowa Center for Biocatalysis and Bioprocessing. M.M.J.C. was the recipient of a studentship from the FCAR of Quebec, Canada. S.R. would like to acknowledge financial support from USPHS grant no. GM62904. This work was supported in part by a Discovery grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada (to L.D.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramaswamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, E.N., Friemann, R., Karlsson, A. et al. Determining Rieske cluster reduction potentials. J Biol Inorg Chem 13, 1301–1313 (2008). https://doi.org/10.1007/s00775-008-0413-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0413-4

Keywords

Navigation