Skip to main content
Log in

Density functional study of the catalytic cycle of nickel–iron [NiFe] hydrogenases and the involvement of high-spin nickel(II)

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In light of recent experiments suggesting high-spin (HS) Ni(II) species in the catalytic cycle of [NiFe] hydrogenase, a series of models of the Ni(II) forms Ni-SI(I,II), SI-CO and Ni-R(I,II,III) were examined in their high-spin states via density functional calculations. Because of its importance in the catalytic cycle, the Ni–C form was also included in this study. Unlike the Ni(II) forms in previous studies, in which a low-spin (LS) state was assumed and a square–planar structure found, the optimized geometries of these HS Ni(II) forms resemble those observed in the crystal structures: a distorted tetrahedral to distorted pyramidal coordination for the NiS4. This resemblance is particularly significant because the LS state is 20–30 kcal/mol less stable than the HS state for the geometry of the crystal structure. If these Ni(II) forms in the enzyme are not high spin, a large change in geometry at the active site is required during the catalytic cycle. Furthermore, only the HS state for the CO-inhibited form SI-CO has CO stretching frequencies that match the experimental results. As in the previous work, these new results show that the heterolytic cleavage reaction of dihydrogen (where H2 is cleaved with the metal acting as a hydride acceptor and a cysteine as the proton acceptor) has a lower energy barrier and is more exothermic when the active site is oxidized to Ni(III). The enzyme models described here are supported by a calibrated correlation of the calculated and measured CO stretching frequencies of the forms of the enzyme. The correlation coefficient for the final set of models of the forms of [NiFe] hydrogenase is 0.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 3
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Linear regression analysis just using the CO values yields: ν exp=0.948ν calc, R 2=0.77.

  2. Nearly all of the models without a third bridging Ni–Fe ligand have longer Ni–Fe distances than those observed for the crystal structures. The discrepancies are most likely due to our simplified model, which lacks a complete protein backbone. However, fixing the Ni–Fe distance to the experimental value (2.9 Å) has little geometric or energetic effect on the states of these species. For example, the freely optimized HS SII form is 1.72 kcal/mol more stable than the freely optimized LS one, and the dihedral angles of the NiS  unit are 87.4° (HS) and 16.6° (LS). For the optimized geometries with a fixed Ni–Fe distance, the HS SII form is 2.0 kcal/mol more stable than the corresponding LS one, and the dihedral angles of the NiS4 unit are 88.6° (HS) and 19.1° (LS). Furthermore, fixing the Ni–Fe distance in SII models only raises the energies of these two forms by 2.78 (HS) and 2.20 (LS) kcal/mol. Similar changes are found for the partially optimized Ni-R form witha fixed Ni–Fe distance. Thus, reasonable models for the energies, frequencies and geometries of other ligands can be obtained without the full constraint provided by the protein.

  3. Although a recent study suggests that there is a second (reduced by one electron) CO-inhibited form, the (SI-CO)red form, we will not study this form because this species occurs due to the cluster reduction [31].

References

  1. Fontecilla-Camps JC (1996) J Biol Inorg Chem 1:91–98

    Article  CAS  Google Scholar 

  2. Frey M (1998) Structure and bonding, vol 90. Springer, Berlin Heidelberg New York, pp 97–126

  3. Frey M (2002) ChemBioChem 3:153–160

    Article  PubMed  CAS  Google Scholar 

  4. Cammack R, Frey M, Robson R (2001) Hydrogen as fuel. Taylor & Francis, London

  5. Albracht SPJ (1994) Biochim Biophys Acta 1188:167–204

    Article  PubMed  Google Scholar 

  6. Garcin E, Vernede X, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC (1999) Structure 7:557–566

    Article  PubMed  CAS  Google Scholar 

  7. Adams MWW (1990) Biochim Biophys Acta 1020:115–145

    Article  PubMed  CAS  Google Scholar 

  8. Thauer RK, Klein AR, Hartmann GC (1996) Chem Rev 96:3031–3042

    Article  PubMed  CAS  Google Scholar 

  9. Lyon EJ, Shima S, Buurman G, Chowdhuri S, Batschauer A, Steinbach K, Thauer RK (2004) Eur J Biochem 271:195–204

    Google Scholar 

  10. Maroney MJ, Bryngelson PA (2001) J Biol Inorg Chem 6:453–459

    Article  PubMed  CAS  Google Scholar 

  11. Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Nature 373:580–587

    Article  PubMed  CAS  Google Scholar 

  12. Volbeda A, Garcin E, Piras C, De Lacey AL, Fernandez VM, Hatchikian EC, Frey M, Fontecilla-Camps JC (1996) J Am Chem Soc 118:12989–12996

    Article  CAS  Google Scholar 

  13. Higuchi Y, Yagi T, Yasuoka N (1997) Structure 5:1671–1680

    Article  PubMed  CAS  Google Scholar 

  14. Rousset M, Montet Y, Guigliarelli B, Forget N, Asso M, Bertrand P, Fontecilla-Camps JC, Hatchikian EC (1998) Proc Natl Acad Sci USA 95:11625–11630

    Article  PubMed  CAS  Google Scholar 

  15. Higuchi Y, Ogata H, Miki K, Yasuoka N, Yagi T (1999) Structure 7:549–556

    Article  PubMed  CAS  Google Scholar 

  16. Ogata H, Mizoguchi Y, Mizuno N, Miki K, Adachi S, Yasuoka N, Yagi T, Yamauchi O, Hirota S, Higuchi Y (2002) J Am Chem Soc 124:11628–11635

    Article  PubMed  CAS  Google Scholar 

  17. Moura JJG, Moura I, Huynh BH, Kruiger HJ, Teixeira M, Du Varney RG, Der Vartanian DG, Ljungdahl P, Xavier AV, Peck HD Jr, LeGall J (1982) J Biochem Biophys Res Commun 108:1388–1393

    Article  CAS  Google Scholar 

  18. LeGall J, Ljungdahl P, Moura I, Perk HD Jr, Xavier AV, Moura JJG, Teixeira M, Huynh BH, Der Vartanian DV (1982) Biochem Biophys Res Commun 106:610–616

    Article  PubMed  CAS  Google Scholar 

  19. Fernandez VM, Hatchikian EC, Cammack R (1985) Biochim Biophys Acta 832:69–79

    CAS  Google Scholar 

  20. Fernandez VM, Hatchikian EC, Patil DS, Cammack R (1986) Biochim Biophys Acta 883:145–154

    CAS  Google Scholar 

  21. Cammack R, Patil DS, Hatchikian EC, Fernandez VM (1987) Biochim Biophys Acta 912:98–109

    CAS  Google Scholar 

  22. Whitehead JP, Gurbiel RJ, Bagyinka C, Hoffman BM, Maroney MJ (1993) J Am Chem Soc 115:5629–5635

    Article  CAS  Google Scholar 

  23. Dole F, Fournel A, Magro V, Hatchikian EC, Bertrand P, Guigliarelli B (1997) Biochemistry 36:7847–7854

    Article  PubMed  CAS  Google Scholar 

  24. Trofanchuk O, Stein M, Gebner C, Lendzian F, Higuchi Y, Lubitz W (2000) J Biol Inorg Chem 5:36–44

    Article  PubMed  CAS  Google Scholar 

  25. Bleijlevens B, Faber BW, Albracht SPJ (2001) J Biol Inorg Chem 6:763–769

    Article  PubMed  CAS  Google Scholar 

  26. Bagley KA, Van Garderen CJ, Woodruff WH, Duin EC, Albracht SPJ (1994) Biochemistry 33:9229–9236

    Article  PubMed  CAS  Google Scholar 

  27. Bagley KA, Duin EC, Roseboom W, Albracht SPJ, Woodruff WH (1995) Biochemistry 34:5527–5535

    Article  PubMed  CAS  Google Scholar 

  28. Happe RP, Roseboom W, Pierik AJ, Albracht SPJ, Bagley KA (1997) Nature 385:126

    Article  PubMed  CAS  Google Scholar 

  29. De Lacey AL, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC, Fernandez VM (1997) J Am Chem Soc 119:7181–7189

    Article  CAS  Google Scholar 

  30. Happe RP, Roseboom W, Albracht SPJ (1999) Eur J Biochem 259:602–608

    Article  PubMed  CAS  Google Scholar 

  31. De Lacey AL, Stadler C, Fernandez VM, Hatchikian EC, Fan H-J, Li S, Hall MB (2002) J Biol Inorg Chem 7:318–326

    Article  PubMed  CAS  Google Scholar 

  32. Gu Z, Dong J, Allan CB, Choudhury SB, Franco R, Moura JJG, Moura I, LeGall J, Przybyla AE, Roseboom W, Albracht SPJ, Axley MJ, Scott RA, Maroney MJ (1996) J Am Chem Soc 118:11155–11165

    Article  CAS  Google Scholar 

  33. Davidson G, Choudhury SB, Gu Z, Bose K, Roseboom W, Albracht SPJ, Maroney MJ (2000) Biochemistry 39:7468–7479

    Article  PubMed  CAS  Google Scholar 

  34. Wang H, Ralston CY, Patil DS, Jones RM, Gu W, Verhagen M, Adams M, Ge P, Riordan C, Marganian CA, Mascharak P, Kovacs J, Miller CG, Collins TJ, Brooker S, Croucher PD, Wang K, Stiefel EI, Cramer SP (2000) J Am Chem Soc 122:10544–10552

    Article  CAS  Google Scholar 

  35. Gu W, Jacquamet L, Patil DS, Wang HX, Evans DJ, Smith MC, Millar M, Koch S, Eichhorn DM, Latimer M, Cramer SP (2003) J Inorg Biol 93:41–51

    Article  CAS  Google Scholar 

  36. Fan C-L, Teixeira M, Moura J, Moura I, Hutnh B-H, La Gall J, Peck HD, Hoffman BM (1991) J Am Chem Soc 113:20–24

    Article  CAS  Google Scholar 

  37. Huyett JE, Carepo M, Pamplona A, Franco R, Moura I, Moura JJG, Hoffman BM (1997) J Am Chem Soc 119:9291–9292

    Article  CAS  Google Scholar 

  38. Gessner Ch, Stein M, Albracht SPJ, Lubitz W (1999) J Biol Inorg Chem 4:379–389

    Article  PubMed  CAS  Google Scholar 

  39. Carepo M, Tierney DL, Brondino CD, Yang TC, Pamplona A, Telser J, Moura I, Moura JJG, Hoffman BM (2002) J Am Chem Soc 124:281–286

    Article  PubMed  CAS  Google Scholar 

  40. Muller A, Tscherny I, Kappl R, Hatchikian EC, Huttermann J, Cammack R (2002) J Biol Inorg Chem 7:177–194

    Article  PubMed  CAS  Google Scholar 

  41. Fauque G, Peck HD Jr, Moura JJ, Huynh BH, Berlier Y, DerVartarian DV, Texeira M, Przybyla AE, Lespinat PA, Moura I (1988) FEMS Microbiol Rev 4:299–344

    PubMed  CAS  Google Scholar 

  42. Berlier Y, Lespinat PA, Dimon B (1990) Anal Biochem 188:427–431

    Article  PubMed  CAS  Google Scholar 

  43. De Lacey AL, Santamaria E, Hatchikian EC, Fernandez VM (2000) Biochim Biophys Acta 1481:371–380

    PubMed  CAS  Google Scholar 

  44. Léger C, Jones AK, Roseboom W, Albratcht SPJ, Armstrong FA (2002) Biochemistry 41:15736–15746

    Article  PubMed  CAS  Google Scholar 

  45. Dementin S, Burlat B, De Lacey AL, Pardo A, Adryanczyk-Perrier G, Guigliarelli B, Fernandez VM, Rousset M (2004) J Biol Chem 12:10508–10513

    Google Scholar 

  46. Volbeda A, Martin L, Cavazza Ch, Matho M, Faber BW, Roseboom W, Albracht SPJ, Garcin E, Rousset M, Fontecilla-Camps JC (2005) J Biol Inorg Chem 10:239–249

    Article  PubMed  CAS  Google Scholar 

  47. Higuchi Y, Toujou F, Tsukamoto K, Yagi T (2000) J Inorg Biochem 80:205–211

    Article  PubMed  CAS  Google Scholar 

  48. Niu S, Thomson LM, Hall MB (1999) J Am Chem Soc 121:4000–4007

    Article  CAS  Google Scholar 

  49. Fan H-J, Hall MB (2001) J Biol Inorg Chem 6:467–473

    Article  PubMed  CAS  Google Scholar 

  50. Bleijlevens B, van Broekhuizen FA, De Lacey AL, Fernandez VM, Albracht SPJ (2004) J Biol Inorg Chem 9:743–752

    Article  PubMed  CAS  Google Scholar 

  51. Roberts LM, Lindahl PA (1995) J Am Chem Soc 117:2565–2572

    Article  CAS  Google Scholar 

  52. Coremans JMCC, Van Garderen CJ, Albracht SPJ (1992) Biochim Biophys Acta 1119:148–156

    PubMed  CAS  Google Scholar 

  53. Coremans JMCC, Van der Zwaan JW, Albracht SPJ (1992) Biochim Biophys Acta 1119:157–168

    PubMed  CAS  Google Scholar 

  54. Stein M, van Lenthe E, Baerends EJ, Lubitz W (2001) J Am Chem Soc 123:5839–5840

    Article  PubMed  CAS  Google Scholar 

  55. Stadler C, DeLacey AL, Hernandez B, Fernandez VM, Conesa JC (2002) Inorg Chem 41:4417–4423

    Article  PubMed  CAS  Google Scholar 

  56. Stadler C, DeLacey AL, Montet Y, Volbeda A, Fontecilla-Camps JC, Conesa JC, Fernandez VM (2002) Inorg Chem 41:4424–4434

    Article  PubMed  CAS  Google Scholar 

  57. Stein M, Lubitz W (2002) Curr Opin Chem Biol 6:243–249

    Article  PubMed  CAS  Google Scholar 

  58. Kowal AT, Zambrano IC, Moura I, Moura JJG, LeGall J, Johnson MK (1988) Inorg Chem 27:1162–1166

    Article  CAS  Google Scholar 

  59. Wang CP, Franco R, Moura JJG, Moura I, Day EP (1992) J Biol Chem 267:7378–7380

    PubMed  CAS  Google Scholar 

  60. Pavlov M, Siegbahn PEM, Blomberg MRA, Crabtree RH (1998) J Am Chem Soc 120:548–555

    Article  CAS  Google Scholar 

  61. Amara P, Volbeda A, Fontecilla-Camps JC, Field MJ (1999) J Am Chem Soc 121:4468–4477

    Article  CAS  Google Scholar 

  62. Pavlov M, Bomberg MRA, Siegbahn PEM (1999) Int J Quant Chem 73:197–207

    Google Scholar 

  63. De Gioia L, Fantucci P, Guigliarelli B, Bertrand P (1999) Inorg Chem 38:2658–2662

    Article  CAS  Google Scholar 

  64. De Gioia L, Fantucci P, Guigliarelli B, Bertrand P (1999) Int J Quant Chem 73:187–195

    Article  CAS  Google Scholar 

  65. Siegbahn PEM, Blomberg MRA (2000) Chem Rev 100:421–437

    Article  PubMed  CAS  Google Scholar 

  66. Li S, Hall MB (2001) Inorg Chem 40:18–24

    Article  PubMed  CAS  Google Scholar 

  67. Niu S, Hall MB (2001) Inorg Chem 40:6201–6203

    Article  PubMed  CAS  Google Scholar 

  68. Fan H-J, Hall MB (2002) J Am Chem Soc 124:394–395

    Article  PubMed  CAS  Google Scholar 

  69. Bruschi M, De Gioia L, Zampella G, Reiher M, Fantucci P, Stein M (2004) J Biol Inorg Chem 9:873–884

    Article  PubMed  CAS  Google Scholar 

  70. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B.4 and B.5. Gaussian, Inc., Pittsburgh, PA

  71. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  72. Lee C, Yang W, Parr RG (1988) Phys Rev B37:785–789

    Article  CAS  Google Scholar 

  73. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  74. Couty M, Hall MB (1996) J Comput Chem 17:1359–1370

    Article  CAS  Google Scholar 

  75. Ehlers AW, Bohme M, Dapprich S, Gobbi A, Hollwarth A, Jonas V, Kohler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114

    Article  CAS  Google Scholar 

  76. Check CE, Faust TO, Bailey JM, Wright BJ, Gilbert TM, Sunderlin LS (2001) J Phys Chem 105:8111–8116

    CAS  Google Scholar 

  77. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  78. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  79. Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51:2657

    Article  CAS  Google Scholar 

  80. Marganian CA, Vazir H, Baidya N, Olmstead MM, Mascharak PK (1995) J Am Chem Soc 117:1584–1594

    Article  CAS  Google Scholar 

  81. Davies SC, Evans DJ, Hughes DL, Longhurst S, Sanders JR (1999) Chem Commun 1935–1936

  82. Darensbourg MY, Lyon EJ, Smee JJ (2000) Coord Chem Rev 206–207:533–561

    Article  Google Scholar 

  83. Liaw WF, Chiang CY, Lee GH, Peng SM, Lai CH, Darensbourg MY (2000) Inorg Chem 39:480–484

    Article  PubMed  CAS  Google Scholar 

  84. Sellmann D, Geipel F, Moll M (2000) Angew Chem Int Ed 39:561–563

    CAS  Google Scholar 

  85. Darensbourg DJ, Lee WZ, Yarbrough JC (2001) Inorg Chem 40:6533–6536

    Article  PubMed  CAS  Google Scholar 

  86. Verhagen JAW, Ellis DD, Lutz M, Spek AL, Bouwman E (2002) J Chem Soc Dalton Trans 1275–1280

  87. Contakes SM, Hsu SCN, Rauchfuss TM, Wilson SR (2002) Inorg Chem 41:1670–1678

    Article  PubMed  CAS  Google Scholar 

  88. Sellmann D, Geipel F, Heinemann FW (2002) Chem Eur J 8:958–966

    Article  CAS  Google Scholar 

  89. Darensbourg DJ, Reibenspies JH, Lai CH, Lee WZ, Darensbourg MY (1997) J Am Chem Soc 119:7903–7904

    Article  CAS  Google Scholar 

  90. Lai CH, Lee WZ, Miller M, Reibenspies JH, Darensbourg DJ, Darensbourg MY (1998) J Am Chem Soc 120:10103–10114

    Article  CAS  Google Scholar 

  91. Sellmann D, Geipel F, Lauderbach F, Heinemann FW (2002) Angew Chem Int Ed 41:632–634

    Article  CAS  Google Scholar 

  92. Jiang J, Koch SA (2002) Inorg Chem 41:158–160

    Article  PubMed  CAS  Google Scholar 

  93. Liaw WF, Lee JH, Gau HB, Chen CH, Jung SJ, Hung CH, Chen WY, Hu CH, Lee GH (2002) J Am Chem Soc 124:1680–1688

    Article  PubMed  CAS  Google Scholar 

  94. George SJ, Kurkin S, Thorneley RNF, Albracht SPJ (2004) Biochemistry 43:6808–6819

    Article  PubMed  CAS  Google Scholar 

  95. Fan Y, Hall MB (2004) Chem Eur J 10:1805–1814

    Article  CAS  Google Scholar 

  96. Van der Zwaan JW, Albracht SPJ, Fontijn RD, Roelofs YBM (1986) Biochim Biophys Acta 872:208–215

    CAS  Google Scholar 

  97. Cotton FA, Wilkinson G (1980) Advanced inorganic chemistry. Wiley, New York, p 83

  98. Montet Y, Amara P, Volbeda A, Vernede X, Hatchikian EL, Field MJ, Frey M, Fontecilla-Camps JC (1997) Nat Struct Biol 4:523–526

    Article  PubMed  CAS  Google Scholar 

  99. De Lacey A, Fernandez VM, Rousset M, Cavazza C, Hatchikian EC (2003) J Biol Inorg Chem 8:129–134

    Article  PubMed  CAS  Google Scholar 

  100. Siegbahn PEM (2004) Adv Inorg Chem 56:101–105

    Article  CAS  Google Scholar 

  101. Papa S, Capitario N (1998) J Bioenerg Biomembr 30(1):109–119

    Article  PubMed  CAS  Google Scholar 

  102. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Science Foundation (Grant No. 9800184 CHE and MRI 02-16275), The Welch Foundation (Grant No. A-648) and The Spanish Ministry of Science and Technology (BQU2003-04221) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Hall.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardo, A., De Lacey, A.L., Fernández, V.M. et al. Density functional study of the catalytic cycle of nickel–iron [NiFe] hydrogenases and the involvement of high-spin nickel(II). J Biol Inorg Chem 11, 286–306 (2006). https://doi.org/10.1007/s00775-005-0076-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0076-3

Keywords

Navigation