Skip to main content
Log in

Phylogeny and classification of Rosaceae

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Phylogenetic relationships among 88 genera of Rosaceae were investigated using nucleotide sequence data from six nuclear (18S, gbssi1, gbssi2, ITS, pgip, and ppo) and four chloroplast (matK, ndhF, rbcL, and trnL-trnF) regions, separately and in various combinations, with parsimony and likelihood-based Bayesian approaches. The results were used to examine evolution of non-molecular characters and to develop a new phylogenetically based infrafamilial classification. As in previous molecular phylogenetic analyses of the family, we found strong support for monophyly of groups corresponding closely to many previously recognized tribes and subfamilies, but no previous classification was entirely supported, and relationships among the strongly supported clades were weakly resolved and/or conflicted between some data sets. We recognize three subfamilies in Rosaceae: Rosoideae, including Filipendula, Rubus, Rosa, and three tribes; Dryadoideae, comprising the four actinorhizal genera; and Spiraeoideae, comprising Lyonothamnus and seven tribes. All genera previously assigned to Amygdaloideae and Maloideae are included in Spiraeoideae. Three supertribes, one in Rosoideae and two in Spiraeoideae, are recognized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • (2003). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399–436

    Article  Google Scholar 

  • Baillon H. (1869). Histoire des plantes, vol. 1. Librairie de L. Hachette, Paris

    Google Scholar 

  • Benson D. R. and Silvester W. B. (1993). Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol. Rev. 57: 293–319

    PubMed  CAS  Google Scholar 

  • Bortiri E., Oh S., Gao F. and Potter D. (2002). The phylogenetic utility of nucleotide sequences of sorbitol 6-phosphate dehydrogenase in Prunus (Rosaceae). Amer. J. Bot. 89: 1697–1708

    CAS  Google Scholar 

  • Bortiri E., Oh S., Jiang J., Baggett S., Granger A., Weeks C., Buckingham M., Potter D. and Parfitt D. (2001). Phylogeny and systematics of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL-trnF spacer DNA. Syst. Bot. 26: 797–807

    Google Scholar 

  • Boss P. K., Gardner R. C., Janssen B. J. and Ross S. P. (1995). An apple polyphenol oxidase cDNA is up-regulated in wounded tissues. Pl. Molec. Biol. 27: 429–433

    Article  CAS  Google Scholar 

  • Campbell C. S., Donoghue M. J., Baldwin B. G. and Wojciechowski M. F. (1995). Phylogenetic relationships in Maloideae (Rosaceae): evidence from sequences of the internal transcribed spacers of nuclear ribosomal DNA and its congruence with morphology. Amer. J. Bot. 27: 903–918

    Article  Google Scholar 

  • Campbell C. S., Evans R. C., Morgan D. R., Dickinson T. A. and Arsenault M. P. (2007). Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae): limited resolution of a complex evolutionary history. Pl. Syst. Evol. 266: 119–145

    Article  CAS  Google Scholar 

  • Chevalier T., de Rigal D., Mbeguie-AMbeguie D., Gauillard F., Richard-Forget F., and Fils-Lycaon B. R. (1999). Molecular cloning and characterization of apricot fruit polyphenol oxidase. Pl. Physiol. (Lancaster) 119: 1261–1270

    Article  CAS  Google Scholar 

  • Chevreau E. and Laurens F. (1987). The pattern of inheritance in apple (Malus × domestica Borkh.): further results from leaf isozyme analysis. Theor. Appl. Genet. 75: 90–95

    Article  Google Scholar 

  • Chevreau E., Lespinasse Y. and Gallet M. (1985). Inheritance of pollen enzymes and polyploid origin of apple (Malus × domestica Borkh.). Theor. Appl. Genet. 71: 268–277

    CAS  Google Scholar 

  • Cronquist A. (1981). An integrated system of classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Cuatrecasas J. (1970). Flora Neotropica Monograph No. 2, Brunelliaceae. Hafner, Darien, Connecticut

    Google Scholar 

  • Du Mortier B.-C. (1827). Florula belgica: operis majoris prodromus. J. Casterman, Tournay

    Google Scholar 

  • Eriksson T., Donoghue M. J. and Hibbs M. S. (1998). Phylogenetic analysis of Potentilla using DNA sequences of nuclear ribosomal internal transcribed spacers (ITS), and implications for the classification of Rosoideae (Rosaceae). Pl. Syst. Evol. 211: 155–179

    Article  CAS  Google Scholar 

  • Eriksson T., Hibbs M. S., Yoder A. D., Delwiche C. F. and Donoghue M. J. (2003). The phylogeny of Rosoideae (Rosaceae) based on sequences of the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the trnL/F region of chloroplast DNA. Int. J. Pl. Sci. 164: 197–211

    Article  CAS  Google Scholar 

  • Evans R. C. (1999) Molecular, morphological, and ontogenetic evaluation of relationships and evolution in the Rosaceae. Ph.D. dissertation, University of Toronto, Toronto.

  • Evans R. C. and Campbell C. S. (2002). The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Amer. J. Bot. 89: 1478–1484

    CAS  Google Scholar 

  • Evans R. C. and Dickinson T. A. (1999a). Floral ontogeny and morphology in subfamily Amygdaloideae T. and G. (Rosaceae). Int. J. Pl. Sci. 160: 955–979

    Article  Google Scholar 

  • Evans R. C. and Dickinson T. A. (1999b). Floral ontogeny and morphology in subfamily Spiraeoideae Endl. (Rosaceae). Int. J. Pl. Sci. 160: 981–1012

    Article  Google Scholar 

  • Evans R. C. and Dickinson T. A. (2005). Floral ontogeny and morphology in Gillenia (``Spiraeoideae'') and subfamily Maloideae C. Weber (Rosaceae). Int. J. Pl. Sci. 166: 427–447

    Article  Google Scholar 

  • Evans R. C., Alice L. A., Campbell C. S., Kellogg E. A. and Dickinson T. A. (2000). The granule-bound starch synthase (GBSSI) gene in the Rosaceae: multiple loci and phylogenetic utility. Molec. Phylogenet. Evol. 17: 388–400

    Article  PubMed  CAS  Google Scholar 

  • Farr D. F. (1989). Fungi on plants and plant products in the United States. APS Press, St. Paul, Minnesota

    Google Scholar 

  • Farr D.F.,Rossman A.Y., Palm M. E.,McCray E. B. (2005) Fungal databases, systematic botany and mycology laboratory. Agricultural Research Service, United States Department of Agriculture, available at http://nt.ars-grin.gov/fungaldatabases/.

  • Gladkova V. N. (1972). On the origin of subfamily Maloideae. Bot. Zhurn. 57: 42–49

    Google Scholar 

  • Gray A. (1842). The botanical text-book. Putnam, New York

    Google Scholar 

  • Greuter W., McNeil J., Barrie F. R., Burdet H. M., Demoulin V., Filgueiras T. S., Nicolson D. H., Silva P. C., Skog J. E., Trehane P., Turland N. J., Hawksworth D. L. (eds.) (2000) International code of botanical nomeclature. (Tokyo Code). Koeltz Scientific Books, Königstein.

  • Haruta M., Murata M., Hiraide A., Kadokura H., Yamasaki M., Sakuta M., Shimizu S. and Homma S. (1998). Cloning genomic DNA encoding apple polyphenol oxidase and comparison of the gene product in Escherichia coli and in apple. Biosci. Biotechnol. Biochem. 62: 358–362

    Article  PubMed  CAS  Google Scholar 

  • Haruta M., Murata M., Kadokura H. and Homma S. (1999). Immunological and molecular comparison of polyphenol oxidase in Rosaceae fruit trees. Phytochemistry 50: 1021–1025

    Article  PubMed  CAS  Google Scholar 

  • Helfgott D. M., Francisco-Ortega J, Santos-Guerra A., Jansen R. K. and Simpson B. B. (2000). Biogeography and breeding system evolution of the woody Bencomia alliance (Rosaceae) in Macaronesia based on ITS sequence data. Syst. Bot. 25: 82–97

    Article  Google Scholar 

  • Henrickson J. (1986). Notes on Rosaceae. Phytologia 468: 60

    Google Scholar 

  • Huelsenbeck J. P. and Ronquist F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson J. (1964). The genera of flowering plants, vol. 1, Dicotyledons. Clarendon Press, Oxford

    Google Scholar 

  • Hutchinson J. (1969). Evolution and phylogeny of flowering plants. Academic Press, London

    Google Scholar 

  • International Plant Names Index (2006) Published on the internet at http://www.ipni.org.

  • Judd W. S. and Olmstead R. G. (2004). A survey of tricolpate (eudicot) phylogenetic relationships. Amer. J. Bot. 91: 1627–1644

    Google Scholar 

  • Kalkman C. (1965). The Old World species of Prunus subgen. Laurocerasus including those formerly referred to Pygeum. Blumea 13: 1–115

    Google Scholar 

  • Kalkman C. (2004). Rosaceae. In: Kubitzki, K. (eds) The families and genera of vascular plants, vol. 6, Flowering plants - Dicotyledons: Celastrales, Oxalidales, Rosales, Cornales, Ericales, pp 343–386. Springer, Berlin

    Google Scholar 

  • Kerr M. S. (2004) A phylogenetic and biogeographic analysis of Sanguisorbeae (Rosaceae), with emphasis on the Pleistocene radiation of the high Andean genus Polylepis. Ph.D. dissertation, University of Maryland, College Park.

  • Koehne E. (1890). Die Gattungen der Pomaceen. Gaertner, Berlin

    Google Scholar 

  • Kubitzki K. (2004). The families and genera of vascular plants, vol. 6, Flowering plants – Dicotyledons: Celastrales, Oxalidales, Rosales, Cornales, Ericales. Springer, Berlin

    Google Scholar 

  • Lawrence G. H. M. (1951). Taxonomy of vascular plants. Macmillan, New York

    Google Scholar 

  • Lee S. and Wen J. (2001). A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA. Amer. J. Bot. 88: 150–160

    Article  CAS  Google Scholar 

  • Mabberley D. J. (2002). Potentilla and Fragaria (Rosaceae) reunited. Telopea 9: 793–801

    Google Scholar 

  • Maddison W. P. and Maddison D. R. (2003). MacClade, version 4.06. Analysis of phylogeny and character evolution. Sinauer Associates, Inc., Sunderland, Massachusetts

    Google Scholar 

  • Missouri Botanical Garden (2005) Index to Plant Chromosome Numbers Database, available at http://mobot.mobot.org/W3T/Search/ipcn.html.

  • Morgan D. R., Soltis D. E. and Robertson K. R. (1994). Systematic and evolutionary implications of rbcL sequence variation in Rosaceae. Amer. J. Bot. 81: 890–903

    Article  CAS  Google Scholar 

  • Nylander J. A. A. (2005) MrAIC, version 1.4., available at http://www.abc.se/~nylander/.

  • Oh S. (2006). Neillia includes Stephanandra (Rosaceae). Novon 16: 91–95

    Article  Google Scholar 

  • Oh S. and Potter D. (2005). Molecular phylogenetic systematics and biogeography of tribe Neillieae (Rosaceae) using DNA sequences of cpDNA, rDNA and LEAFY. Amer. J. Bot. 92: 179–192

    CAS  Google Scholar 

  • Oh S. and Potter D. (2006). Description and phylogenetic position of a new angiosperm family, Guamatelaceae, inferred from chloroplast rbcL, atpB and matK sequences. Syst. Bot. 31: 730–738

    Article  Google Scholar 

  • Pankhurst R. (2005) Rosaceae database. On-line searchable version available through the International Organization for Plant Information’s Provisional Global Plant Checklist at: http://bgbm3.bgbm.fu-berlin.de/iopi/gpc/query.asp.

  • Potter D. (2003). Molecular phylogenetic studies in Rosaceae. In: Sharma, A. K. and Sharma, A. (eds) Plant genome: Biodiversity and evolution, vol. I, Pt. A: Phanerogams, pp 319–351. Science Publishers, Inc. Enfield, New Hampshire

    Google Scholar 

  • Potter D., Gao F., Bortiri P. E., Oh S. and Baggett S. (2002). Phylogenetic relationships in Rosaceae inferred from chloroplast matK and trnL-trnF nucleotide sequence data. Pl. Syst. Evol. 231: 77–89

    Article  CAS  Google Scholar 

  • Potter D., Still S. M., Ballian D. and Kraigher H. (2006). Phylogenetic relationships in tribe Spiraeeae (Rosaceae) inferred from nucleotide sequence data. Pl. Syst. Evol. 266: 105–118

    Article  CAS  Google Scholar 

  • Rambaut A. (1996) Se-Al: Sequence Alignment Editor. Available at http://evolve.zoo.ox.ac.uk/software.html.

  • Raspé O., Jacquemart A.-L. and De Sloover J. (1998). Isozymes in Sorbus aucuparia (Rosaceae: Maloideae): genetic analysis and evolutionary significance of zymograms. Int. J. Pl. Sci. 159: 627–636

    Article  Google Scholar 

  • Reveal J. L. (2004) Index nominum supragenericorum plantarum vascularum.?http://www. life.umd.edu/emeritus/reveal/pbio/WWW/supra gen.html.

  • Robertson K. R., Phipps J. B. and Rohrer J. R. (1991). A synopsis of genera in Maloideae (Rosaceae). Syst. Bot. 16: 376–394

    Article  Google Scholar 

  • Rohrer J. R., Robertson K. R. and Phipps J. B. (1994). Floral morphology of Maloideae (Rosaceae) and its systematic relevance. Amer. J. Bot. 81: 574–581

    Article  Google Scholar 

  • Roitman A., Flaks B. R., Fradkina L. Z. and Federov A. A. (1974). Chromosome numbers of flowering plants. Ger. Otto Koeltz Science Publishers, Koenigstein

    Google Scholar 

  • Savile D. B. O. (1979). Fungi as aids in higher plant classification. Bot. Rev. 45: 380–495

    Article  Google Scholar 

  • Sax K. (1933). The origin of the Pomoideae. Proc. Amer. Soc. Hort. Sci. 30: 147–150

    Google Scholar 

  • Schulze-Menz G. K. (1964). Rosaceae. In: Melchior, H. (eds) Engler's Syllabus der Pflanzenfamilien II, pp 209–218. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Shaw J. and Small R. L. (2004). Addressing the “hardest puzzle in American pomology:” phylogeny of Prunus sect. Prunocerasus (Rosaceae) based on seven noncoding chloroplast DNA regions. Amer. J. Bot. 91: 985–996

    CAS  Google Scholar 

  • Simpson C .G., Macrae E. and Gardner R. C. (1995). Cloning of a polygalacturonase inhibiting protein from kiwifruit (GenBank Z49063). Pl. Physiol. 108: 1748

    Google Scholar 

  • Smedmark J. E. E. (2006). Recircumscription of Geum L. (Colurieae: Rosaceae). Bot. Jahrb. Syst. 126: 409–417

    Article  Google Scholar 

  • Smedmark J. E. E. and Eriksson T. (2002). Phylogenetic relationships of Geum (Rosaceae) and relatives inferred from the nrITS and trnL-trnF regions. Syst. Bot. 27: 303–317

    Google Scholar 

  • Smedmark J. E. E., Eriksson T. and Bremer B. (2005). Allopolyploid evolution in Geinae (Colurieae: Rosaceae) – building reticulate species trees from bifurcating gene trees. Organisms Divers. Evolut. 5: 275–283

    Article  Google Scholar 

  • Smedmark J. E. E., Eriksson T., Evans R. C. and Campbell C. S. (2003). Ancient allopolypoloid speciation in Geinae (Rosaceae): evidence from nuclear granule-bound starch synthase (GBSSI) gene sequences. Syst. Biol. 52: 374–385

    PubMed  Google Scholar 

  • Soltis D. E., Soltis P. S., Chase M. W., Mort M. E., Albach D. C., Zanis M., Savolainen V., Hahn W. H., Hoot S. B., Fay M. F., Axtell M., Swensen S. M., Prince L. M., Kress W. J., Nixon K. C. and Farris J. S. (2000). Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot. J. Linn. Soc. 133: 381–461

    Article  Google Scholar 

  • Spjut R. W. (1994). A systematic treatment of fruit types. Mem. New York Bot. Gard. 70: 1–182

    Google Scholar 

  • Staden R. (1996). The Staden sequence analysis package. Mol. Biotechnol. 5: 233–241

    PubMed  CAS  Google Scholar 

  • Sterling C. (1964). Comparative morphology of the carpel in the Rosaceae. III. Pomoideae: Crataegus, Hesperomeles, Mespilus, Osteomeles. Amer. J. Bot. 51: 705–712

    Article  Google Scholar 

  • Sterling C. (1965a). Comparative morphology of the carpel in the Rosaceae. IV. Pomoideae: Chamaemeles, Cotoneaster, Dichotomanthes, Pyracantha. Amer. J. Bot. 52: 47–54

    Article  Google Scholar 

  • Sterling C. (1965b). Comparative morphology of the carpel in the Rosaceae. V. Pomoideae: Amelanchier, Aronia, Malacomeles, Malus, Peraphyllum, Pyrus, Sorbus. Amer. J. Bot. 52: 418–426

    Article  Google Scholar 

  • Sterling C. (1965c). Comparative morphology of the carpel in the Rosaceae. VI. Pomoideae: Eriobotrya, Heteromeles, Photinia, Pourthiaea, Raphiolepis, Stranvaesia. Amer. J. Bot. 52: 938–946

    Article  Google Scholar 

  • Sterling C. (1966). Comparative morphology of the carpel in the Rosaceae. VII. Pomoideae: Chaenomeles, Cydonia, Docynia. Amer. J. Bot. 53: 225–231

    Article  Google Scholar 

  • Stotz H. U., Powell A. L. T., Damon S. E., Greve L. C., Bennett A. B. and Labavitch J. M. (1993). Molecular characterization of a polygalacturonase inhibitor from Pyrus communis L. cv. Bartlett. Pl. Physiol. (Lancaster) 102: 133–138

    CAS  Google Scholar 

  • Stotz H. U., Contos J. J., Powell A. L., Bennett A. B. and Labavitch J. M. (1994). Structure and expression of an inhibitor of fungal polygalacturonases from tomato. Pl. Molec. Biol. 25: 607–617

    Article  CAS  Google Scholar 

  • Swofford D. L. (2002). PAUP* Phylogenetic analysis using (* and other methods) parsimony Version 4. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Taberlet P., Gielly L., Patou G. and Bouvet J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl. Molec. Biol. 17: 1105–1109

    Article  CAS  Google Scholar 

  • Takhtajan A. (1997). Diversity and classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F. and Higgins D. G. (1997). The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 25: 4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Toubart P., Desiderio A., Salvi G., Cervone F., Daroda L. and De Lorenzo G. (1992). Cloning and characterization of the gene encoding the endopolygalacturonase-inhibiting protein (PGIP) of Phaseolus vulgaris L. Pl. J. 2: 367–373

    CAS  Google Scholar 

  • Vanden Heuvel B. D., Benson D. R., Bortiri E. and Potter D. (2004). Low genetic diversity among Frankia spp. strains nodulating sympatric populations of actinorhizal species of Rosaceae, Ceanothus (Rhamnaceae) and Datisca glomerata (Datiscaceae) west of the Sierra Nevada (California). Canad. J. Microbiol. 50: 989–1000

    Article  CAS  Google Scholar 

  • Wallaart R. A. M. (1980). Distribution of sorbitol in Rosaceae. Phytochemistry 19: 2603–2610

    Article  CAS  Google Scholar 

  • Weeden N. and Lamb R. (1987). Genetics and linkage analysis of 19 isozyme loci in apple. J. Amer. Soc. Hort. Sci. 112: 865–872

    CAS  Google Scholar 

  • Wiens J. J. (2003). Missing data, incomplete taxa and phylogenetic accuracy. Syst. Biol. 52: 528–538

    Article  PubMed  Google Scholar 

  • Xia X. and Xie Z. (2001). DAMBE: software package for data analysis in molecular biology and evolution. J. Heredity 92: 371–373

    Article  CAS  Google Scholar 

  • Yao C., Conway W. S. and Sams C. E. (1995). Purification and characterization of a polygalacturonase-inhibiting protein from apple fruit. Phytopathology 85: 1373–1377

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Potter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potter, D., Eriksson, T., Evans, R. et al. Phylogeny and classification of Rosaceae. Plant Syst. Evol. 266, 5–43 (2007). https://doi.org/10.1007/s00606-007-0539-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-007-0539-9

Keywords

Navigation