Skip to main content

Advertisement

Log in

A 17-year oscillation in cancer mortality birth cohorts on three continents – synchrony to cosmic ray modulations one generation earlier

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Cross-generational effects (grandmother effects) associated with epigenetic imprinting, environmental exposures, and lifestyle choices are beginning to be explored by various investigators. The possibility that low-level background radiation can be a driver of such effects has been suggested previously and is explored further in this study. Age-period-cohort analysis was performed on United States (US), United Kingdom (UK), and Australian (AU) female breast cancer mortality of the twentieth century, as well as on UK female total cancer mortality, to extract the high-frequency oscillations in the birth cohort time series. US fetal and infant congenital mortality were examined to extend the birth cohorts to modern times. A ∼17-year cycle was detected in all birth cohort series, which spanned approximately 180 years from 1820 to 2000. This suggests a global, environmental cause. To mimic previous work in examining a possible link to cosmic radiation, the 17- to 18-year cycles of the cosmogenic nuclide 14C, the sunspot double-cycle, neutron monitors, and a compilation of ground-based magnetic field observations were examined in the birth cohort and germ cell cohort time frames. Evidence is presented that optimal alignments with extraterrestrial oscillations occur in the time frame of the germ-cell cohort, one generation before the birth cohorts. Furthermore, the alignment is optimized by accounting for the changes in the maternal age distribution over time. These findings have potential importance to the mechanisms of disease as well as species adaptation and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • BRER (Board on Radiation Effects Research) (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII, phase 2 The National Academies Press, Washington.

  • Castillo E (1988) Extreme value theory in engineering. Academic, San Diego

    Google Scholar 

  • Chaney EK, Sliney DH (2005) Re-evaluation of the ultraviolet hazard action spectrum - the impact of spectral bandwidth. Health Phys 89:322–332. doi:10.1097/01.HP.0000164650.96261.9d

    Article  CAS  PubMed  Google Scholar 

  • Durante M, Manti L (2008) Human response to high-background radiation environments on Earth and in space. Adv Space Res 42:999–1007. doi:10.1016/j.asr.2007.02.014

    Article  Google Scholar 

  • Frejka T, Sardon J-P (2004) Childbearing trends and prospects in low-fertility countries: a cohort analysis. Kluwer, Dordrecht, pp 373–374

    Google Scholar 

  • Gilbert SF, Epel D (2009) Ecological developmental biology: integrating epigentics, medicine, and evolution. Sinauer, Sunderland, MA

    Google Scholar 

  • Godar DE, Wengraitis SP, Shreffler J, Sliney DH (2001) UV Doses of Americans. Photochem Photobiol 73:621–629. doi:10.1562/0031-8655(2001)073<0621:UDOA>2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  • Heimers A (1999) Cytogenetic analysis in human lymphocytes after exposure to simulated cosmic radiation which reflects the inflight radiation environment. Int J Radiat Biol 75:691–698. doi:10.1080/095530099140023

    Article  CAS  PubMed  Google Scholar 

  • Hoyt DV, Schatten KH (1998) Group sunspot numbers: a new solar activity reconstruction. Sol Phys 181:491–512. doi:10.1023/A:1005056326158

    Article  Google Scholar 

  • Joyce P, Rokyta D, Beisel CJ, Orr HA (2008) A general extreme value theory model for the adaptation of DNA sequences under strong selection and weak mutation. Genetics 180:1627–1643. doi:10.1534/genetics.108.088716

    Article  PubMed  Google Scholar 

  • Juckett DA (1998) Evidence for a 17-year cycle in the IMF directions at 1 AU, in solar coronal hole variations, and in planetary magnetospheric modulations. Sol Phys 183:201–224. doi:10.1023/A:1005075703810

    Article  CAS  Google Scholar 

  • Juckett DA (2001) Period and phase comparisons of near-decadal oscillations in solar, geomagnetic, and cosmic ray time series. J Geophys Res 106:18651–18665. doi:10.1029/2000JA000367

    Article  Google Scholar 

  • Juckett DA (2007) A 140-year global time signature in cancer mortality birth cohorts correlates to galactic cosmic ray variation. Int J Astrobiol 6:307–319

    Article  Google Scholar 

  • Juckett DA, Rosenberg B (1993) Correlation of human longevity oscillations with sunspot cycles. Radiat Res 133:312–320. doi:10.2307/3578215

    Article  CAS  PubMed  Google Scholar 

  • Juckett DA, Rosenberg B (1997) Time series analysis supporting the hypothesis that enhanced cosmic radiation during germ cell formation can increase breast cancer mortality in germ cell cohorts. Int J Biometeorol 40:206–222

    Article  CAS  PubMed  Google Scholar 

  • Lim MK (2002) Cosmic rays: are air crew at risk? Occup Environ Med 59:428–432. doi:10.1136/oem.59.7.428

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud BH, Hexsel CL, Hamzavi IH, Lim HW (2008) Effects of visible light on the skin. Photochem Photobiol 84:450–462. doi:10.1111/j.1751-1097.2007.00286.x

    Article  CAS  PubMed  Google Scholar 

  • Medvedev MV, Melott AL (2007) Do extragalactic cosmic rays induce cycles in fossil diversity? Astrophys J 664:879–889. doi:10.1086/518757

    Article  CAS  Google Scholar 

  • Melott AL, Krejci AJ, Thomas BC, Medvedev MV, Wilson GW, Murray MJ (2008) Atmospheric consequences of cosmic-ray variability in the extragalactic shock model. J Geophys Res 113:E10007. doi:10.1029/2008JE003206

    Article  Google Scholar 

  • National Archive of the UK (n.d.) National Digital Archive of Datasets. Historic Mortality Data Files RG 69. NDAD: CRDA/20, 1901–1992

  • Parkin DM, Whelan SL, Ferlay J, Teppo L, Thomas DB (eds) (2002) Cancer incidence in five continents Vol VIII Lyon France: International Agency for Research on Cancer (IARC scientific publication 155)

  • Sliney DH (2000) Ultraviolet radiation exposure criteria. Radiat Prot Dosimetry 91:213–222

    Google Scholar 

  • Sonett CP, Webb GM, Zakharian A (1997) The quest for evidence of long-period solar wind variability. In: Jokipii JR, Sonett CP, and Giampapa MS (eds) Cosmic winds and the heliosphere. University of Arizona Press, pp 67–110

  • Stoupel EG, Frimer H, Appelman Z, Ben-Neriah Z, Dar H, Fejgin MD, Gershoni-Baruch R, Manor E, Barkai G, Shalev S, Gelman-Kohan Z, Reish O, Lev D, Davidov B, Goldman B, Shohat M (2005) Chromosome aberration and environmental physical activity: down syndrome and solar and cosmic ray activity, Israel, 1990–2000. Int J Biometeorol 50:1–5. doi:10.1007/s00484-005-0274-2

    Article  PubMed  Google Scholar 

  • Stuiver M, Reimer PJ, Braziunas TF (1998) High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40:1127–1151

    CAS  Google Scholar 

  • Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70:1055–1096. doi:10.1109/PROC.1982.12433

    Article  Google Scholar 

  • US Department of Health and Human Services (n.d.) Vital Statistics of the United States 1939–2006, National Center for Health Statistics. Government Printing Office, Washington, D.C.

  • US Bureau of the Census (n.d.a) Mortality Statistics 1900–1938. Government Printing Office, Washington, D.C.

  • US Bureau of the Census (n.d.b) Census of the Population United States, 1900, 1910, 1920, 1930, 1940. Government Printing Office, Washington, D.C.

  • US Bureau of the Census (1945) Sixteenth Census of the United States 1940. Population Differential Fertility 1940 and 1910. Government Printing Office, Washington, D.C.

  • Vautard R, Yiou P, Ghil M (1992) Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D 58:95–126. doi:10.1016/0167-2789(92)90103-T

    Article  Google Scholar 

  • Willigan JD, Mineau GP, Anderton DL, Bean LL (1982) A macrosimulation approach to the investigation of natural fertility. Demography 19:161–176. doi:10.2307/2061188

    Article  CAS  PubMed  Google Scholar 

  • Wilson PR (1994) Solar and stellar activity cycles. Cambridge University Press, Cambridge, pp 16–23

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Barros Research Institute and by a joint operating agreement grant from the Michigan State University Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Juckett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juckett, D.A. A 17-year oscillation in cancer mortality birth cohorts on three continents – synchrony to cosmic ray modulations one generation earlier. Int J Biometeorol 53, 487–499 (2009). https://doi.org/10.1007/s00484-009-0237-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-009-0237-0

Keywords

Navigation