Skip to main content

Advertisement

Log in

Displacement of a native by an alien bumblebee: lower pollinator efficiency overcome by overwhelmingly higher visitation frequency

  • Plant-Animal Interactions - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Biological invasions might constitute a major threat to mutualisms. Introduced pollinators might competitively displace their native counterparts, which in turn affects the pollination of native plants, if native and alien visitors differ in pollinator effectiveness. Since its invasion in 1994 into south-west Argentina, the introduced European bumblebee Bombus ruderatus has continuously increased in abundance, along with a simultaneous decrease in the abundance of the native Bombus dahlbomii. The latter is the only native bumblebee species of the temperate forests of southern South America, and the main pollinator of the endemic herb Alstroemeria aurea. In order to evaluate the impact of the ongoing displacement of the native by the alien bumblebee, we compared the pollinator effectiveness (i.e., the combination of pollinator efficiency per visit and visitation frequency) between both bumblebee species, as well as related pollinator traits that might account for potential differences in pollinator efficiency. Native Bombus dahlbomii, which has a larger body and spent more time per flower, was the more efficient pollinator compared to Bombus ruderatus, both in terms of quantity and quality of pollen deposited per visit. However, Bombus ruderatus was a much more frequent flower visitor than Bombus dahlbomii. As a consequence, Bombus ruderatus is nowadays a more effective pollinator of A. aurea than its native congener. Despite the lack of evidence of an increase in seed set at the population level, comparisons with historical records of Bombus dahlbomii abundances prior to Bombus ruderatus’ invasion suggest that the overall pollination intensity of A. aurea might in fact have risen as a consequence of this invasion. Field experiments like these, that incorporate the natural variation in abundance of native and alien species, are powerful means to demonstrate that the consequences of invasions are more complex than previous manipulated and controlled experiments have suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrahamovich A, Diaz NB (2001) Distribución geográfica de las especies del género Bombus Latreille (Hymenoptera, Apidae) en Argentina. Rev Bras Entomol 45:23–36

    Google Scholar 

  • Aizen MA (1997) Influence of local floral density and sex ratio on pollen receipt and seed output: empirical and experimental results in dichogamous Alstroemeria aurea (Alstroemeriaceae). Oecologia 111:404–412

    Article  Google Scholar 

  • Aizen MA (2001) Flower sex ratio, pollinator abundance, and the seasonal pollination dynamics of a protandrous plant. Ecology 82:127–144

    Article  Google Scholar 

  • Aizen MA, Basilio A (1995) Within and among flower sex-phase distribution in Alstroemeria aurea (Alstroemeriaceae). Can J Bot 73:1986–1994

    Article  Google Scholar 

  • Aizen MA, Basilio A (1998) Sex differential nectar secretion in protandrous Alstroemeria aurea (Alstroemeriaceae): is production altered by pollen removal and receipt? Am J Bot 85:245–252

    Article  Google Scholar 

  • Aizen MA, Feinsinger P (2003) Bees not to be? Responses of insect pollinator faunas and flower pollination to habitat fragmentation. In: Bradshaw G, Marquet P, Mooney HA (eds) How landscapes change: human disturbance and ecosystem disruptions in the Americas. Springer, New York, pp 112–119

    Google Scholar 

  • Aizen MA, Harder LD (2007) Expanding the limits of the pollen-limitation concept: effects of pollen quantity and quality. Ecology 88:271–281

    Article  PubMed  Google Scholar 

  • Aizen MA, Raffaele E (1996) Nectar production and pollination in Alstroemeria aurea: responses to level and pattern of flowering shoot defoliation. Oikos 76:312–322

    Article  Google Scholar 

  • Aizen MA, Raffaele E (1998) Flowering-shoot defoliation affects pollen grain size and post pollination performance in Alstroemeria aurea. Ecology 79:2133–2142

    Google Scholar 

  • Aizen MA, Morales CL, Morales JM (2008) Invasive mutualists erode native pollination webs. PloS Biol 6:396–403

    Article  CAS  Google Scholar 

  • Aizen MA, Vázquez DP, Smith-Ramirez C (2002) Historia natural y conservacíon de los mutualismos planta-animal del bosque templade de Sudamérica austral. Rev Chil Hist Nat 75:79–97

    Article  Google Scholar 

  • Alexander MP (1969) Differential staining of aborted and nonaborted pollen. Stain Technol 44:117–122

    PubMed  CAS  Google Scholar 

  • Arretz PV, Macfarlane RP (1986) The introduction of Bombus ruderatus to Chile for red clover pollination. Bee World 67:15–22

    Google Scholar 

  • Barthell JF, Randall JM, Thorp RW, Wenner AM (2001) Promotion of seed set in yellow star-thistle by honey bees: evidence of an invasive mutualism. Ecol Appl 11:1870–1883

    Article  Google Scholar 

  • Christian CE (2001) Consequences of biological invasion reveal the importance of mutualism for plant communities. Nature 413:635–639

    Article  PubMed  CAS  Google Scholar 

  • Dick CW (2001) Genetic rescue of a remnant tropical tree by an alien pollinator. Proc Roy Soc Lond B 268:2391–2397

    Article  CAS  Google Scholar 

  • Feinsinger P, Tiebout HM (1991) Competition among plants sharing hummingbird pollinators: Laboratory experiments on a mechanism. Ecology 72:1946–1952

    Article  Google Scholar 

  • Fumero-Cabán JJ, Meléndez-Ackerman EJ (2007) Relative pollination effectiveness of floral visitors of Pitcairnia angustifolia (Bromeliaceae). Am J Bot 94:419–424

    Article  Google Scholar 

  • Goulson D (2003a) Bumblebees. Their behaviour and ecology. Oxford University Press, Oxford

    Google Scholar 

  • Goulson D (2003b) Effects of introduced bees on native ecosystems. Annu Rev Ecol Syst 34:1–26

    Article  Google Scholar 

  • Goulson D, Stout JC, Langley J, Hughes WOH (2000) Identity and function of scent marks deposited by foraging bumblebees. J Chem Ecol 26:2897–2911

    Article  CAS  Google Scholar 

  • Gross CL, Mackay D (1998) Honeybees reduce fitness in the pioneer shrub Melastoma affine (Melastomataceae). Biol Cons 86:169–178

    Article  Google Scholar 

  • Harder LD, Aizen MA (2004) The functional significance of synchronous protandry in Alstroemeria aurea. Funct Ecol 18:467–474

    Article  Google Scholar 

  • Harder LD, Thomson JD (1989) Evolutionary options for maximizing pollen dispersal of animal-pollinated plants. Am Nat 133:323–344

    Article  Google Scholar 

  • Herrera CM (1987) Components of pollinator “quality”: comparative analysis of a diverse insect assemblage. Oikos 50:79–90

    Article  Google Scholar 

  • Hingston AB, Potts BM, McQuillan PB (2004) The swift parrot, Lathamus discolour, (Psittacidae), social bees (Apidae) and native insects as pollinators of Eucalyptus globules ssp. Globules (Myrtaceae). Aust J Bot 52:371–379

    Article  Google Scholar 

  • Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233

    Article  Google Scholar 

  • Inari N, Nagamitsu T, Kenta T, Goka K, Hiura T (2005) Spatial and temporal pattern of introduced Bombus terrestris abundance in Hokkaido, Japan, and its potential impact on native bumblebees. Popul Ecol 47:77–82

    Article  Google Scholar 

  • Inouye DW (1980) The effect of proboscis and corolla tube lengths on pattern and rates of flower visitation by bumblebees. Oecologia 45:197–201

    Article  Google Scholar 

  • Ivey CT, Martines P, Wyatt R (2003) Variation in pollinator effectiveness in swamp milkweed Asclepias incarnata (Apocynaceae). Am J Bot 90:214–255

    Article  Google Scholar 

  • Kenta T, Inari N, Nagamitsu T, Goka K, Hiura T (2007) Commercialized European bumblebee can cause pollination disturbance: An experiment on seven native plant species in Japan. Biol Cons 134:298–309

    Article  Google Scholar 

  • Macfarlane RP, Gurr L (1995) Distribution of bumblebees in New Zealand. New Zeal Entomol 18:29–36

    Google Scholar 

  • Mendes do Carmo R, Villaron Franceschinelli E (2004) Introduced honeybees (Apis mellifera) reduce pollination success without affecting the floral resource taken by pollinators. Biotropica 36:371–376

    Google Scholar 

  • Michener CD (2000) The bees of the world. John Hopkins University Press, Baltimore

    Google Scholar 

  • Morales CL (2006) Alteración del hábitat e interacciones entre especies nativas y exóticas a través de la polinización en Bosques Templados de Sudamérica Austral. Dissertation. Universidad Nacional del Comahue, Bariloche

  • Morales CL (2007) Introducción de abejorros (Bombus) no nativas: causas, consecuencias ecológicas y perspectivas. Ecol Austral 17:51–65

    Google Scholar 

  • Morales CL, Aizen MA (2002) Does the invasion of alien plants promote invasion of alien flower visitors? A case study from the temperate forests of southern Andes. Biol Invasions 4:87–100

    Article  Google Scholar 

  • Morales CL, Aizen MA (2004) Potential displacement of the native bumblebee Bombus dahlbomii by the invasive Bombus ruderatus in NW Patagonia. In: Hartfelder K, De Jong D (eds) Proceedings of the 8th International Conference on Tropical Bees and VI Encontro sobre Abelhas. Riverao Preto, Brazil, pp 70–76

  • Morales CL, Aizen MA (2006) Invasive mutualism and the structure of plant-pollinator interactions in the temperate forests of north-west Patagonia, Argentina. J Ecol 94:171–180

    Article  Google Scholar 

  • Premoli A, Aizen MA, Kitzberger TD, Raffaele E (2006) Situación ambiental de los bosques Andion-Patagónicos. In: Brown AD, Martínez Ortiz U, Acerbi M, Corchera J (eds) La Situación Ambiental Argentina 2005. Fundacion Vida Silvestre Argentina, Buenos Aires, pp 281–291

    Google Scholar 

  • Rebolledo RR, Martinez PH, Palma MR, Aguilera PA, Klein KC (2004) Actividad de visita de Bombus dahlbomii (Guérin) y Bombus ruderatus (F.) (Himenoptera: Apidae) sobre trébol rosado (Trifolium pratense L.) en la IX región de la Araucanía, Chile. Agric Téc (Chile) 64:245–250

    Google Scholar 

  • Roig-Alsina A, Aizen MA (1996) Bombus ruderatus Fabricius, un nuevo Bombus para la Argentina (Hymenoptera: Apidea). Physis 5:49–50

    Google Scholar 

  • Ruz L (2002) Bee pollinators introduced to Chile: a review. In: Kevan PG, Imperatriz-Fonseca VL (eds) Pollinating bees. The conservation link between agriculture and nature. Proceedings of the workshop on the conservation and sustainable use of pollinators in agriculture, with emphasis on bees. Ministry of Environment, Brasilia, pp 115–167

    Google Scholar 

  • Semmens TD, Turner E, Buttermore R (1993) Bombus terrestris (L.) (Hymenoptera: apidae) now established in Tasmania. Aust J Entomol 32:346

    Article  Google Scholar 

  • Souto CP, Aizen MA, Premoli AC (2002) Effects of crossing distance and genetic relatedness on pollen performance in Alstroemeria aurea (Alstroemeriaceae). Am J Bot 89:427–432

    Article  Google Scholar 

  • Stout JC, Goulson D (2001) The use of conspecific and interspecific scent marks by foraging bumblebees (Bombus spp.). Behav Ecol Sociobiol 43:317–326

    Article  Google Scholar 

  • Stout JC, Goulson D (2002) The influence of nectar secretion rates on the responses of bumblebees (Bombus spp.) to previously visited flowers. Behav Ecol Sociobiol 52:239–246

    Article  Google Scholar 

  • Torreta JP, Medan D, Abrahamovich AH (2006) First record of the invasive bumblebee Bombus terrestris (L.) (Hymenoptera, Apidae) in Argentina. Trans Am Entomol Soc 132:285–289

    Google Scholar 

  • Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualism. Trends Ecol Evol 21:208–216

    Article  PubMed  Google Scholar 

  • Vázquez DP, Simberloff D (2002) Ecological specialization and susceptibility to disturbance: conjectures and refutations. Am Nat 159:606–623

    Article  PubMed  Google Scholar 

  • Vázquez DP, Morris W, Jordano P (2005) Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol Lett 8:1088–1094

    Article  Google Scholar 

  • Wittenberg R, Cock JWM (2001) Invasive Alien species: a toolkit of best prevention and management practices. CAB International, Oxfordshire

    Google Scholar 

  • Zamora R (2001) Functional equivalence in plant-animal interactions: ecological and evolutionary consequences. Oikos 88:442–447

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. Arbetman for field and laboratory assistance, the Adminstración de Parques Nacionales, Delegación Regional Patagonia (Argentina), for research permits, and the staff of Refugio Neumeyer for logistic support. Jane Stout and Marcelo Aizen provided valuable comments on a previous draft. We thank Marcelo Aizen for encouraging discussion and sharing ideas. J. A. M. was supported by the Exchange Program for Students and Teachers between the Universidad Nacional del Comahue (Argentina) and the Plant Ecology Department of Lund (Sweden), funded by Linnaeus-Palme. C. L. M. was supported by The Canon National Parks Science Scholars Program and the National Research Council of Argentina (CONICET). H. G. S was supported by a grant from the Swedish Research Council Formas. The experiments performed within this study comply with the current laws of Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josefin A. Madjidian.

Additional information

Communicated by Florian Schiestl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madjidian, J.A., Morales, C.L. & Smith, H.G. Displacement of a native by an alien bumblebee: lower pollinator efficiency overcome by overwhelmingly higher visitation frequency. Oecologia 156, 835–845 (2008). https://doi.org/10.1007/s00442-008-1039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-008-1039-5

Keywords

Navigation