Skip to main content
Log in

A novel mutation in the connexin 29 gene may contribute to nonsyndromic hearing loss

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Connexins (Cxs) are homologous four-transmembrane domain proteins and constitute the major components of gap junctions. Among a cohort of patients with nonsyndromic hearing loss, we recently identified a novel missense mutation, E269D, in the GJC3 gene encoding connexin 29 (Cx29), as being causally related to hearing loss. The functional alteration of Cx29 caused by the mutant GJC3 gene, however, remains unknown. This study compared the intracellular distribution and assembly of mutant Cx29 (Cx29E269D) with that of the wild-type Cx29 (Cx29WT) in HeLa cells and the effect the mutant protein had on those cells. Cx29TW showed continuous staining along apposed cell membranes in the fluorescent localization assay. In contrast, the p.E269D missense mutation resulted in accumulation of the Cx29 mutant protein in the endoplasmic reticulum (ER) rather than in the cytoplasmic membrane. Co-expression of Cx29WT and Cx29E269D proteins by a bi-directional tet-on expression system demonstrated that the heteromeric connexon accumulated in the cytoplasm, thereby impairing the formation of the gap junction. Based on these findings, we suggest that Cx29E269D has a dominant negative effect on the formation and function of the gap junction. These results provide a novel molecular explanation for the role Cx29 plays in the development of hearing loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad S, Chen S, Sun J, Lin X (2003) Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mouse. Biochem Biophys Res Comm 307:362–368

    Article  PubMed  CAS  Google Scholar 

  • Ahn M, Lee J, Gustafsson A, Enriquez A, Lancaster E, Sul JY, Haydon PG, Paul DL, Huang Y, Abrams CK, Scherer SS (2008) Cx29 and Cx32, two connexins expressed by myelinating glia, do not interact and are functionally distinct. J Neurosci Res 86:992–1006

    Article  PubMed  CAS  Google Scholar 

  • Altevogt BM, Paul DL, Goodenough DA (2000) Cloning and characterization of a novel central nervous system specific connexin, mouse connexin 29. Mol Bio Cell 11:330a

    Google Scholar 

  • Beltramello M, Bicego M, Piazza V, Ciubotaru CD, Mammano F, D’Andrea P (2003) Permeability and gating properties of human connexins 26 and 30 expressed in HeLa cells. Biochem Biophys Res Comm 305:1024–1033

    Article  PubMed  CAS  Google Scholar 

  • Berezin C, Glaser F, Rosenberg J, Paz I, Pupko T, Fariselli P, Casadio R, Ben-Tal N (2004) ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics 20:1322–1324

    Article  PubMed  CAS  Google Scholar 

  • Betts MJ, Russell RB (2003) Amino acid properties and consequences of substitutions. In: Barnes MR, Gray IC (eds) Bioinformatics for Geneticists. Wiley, USA

  • Bruzzone R, White TW, Paul DL (1996) Connections with connexins the molecular-basis of direct intercellular signalling. Eur J Biochem 238:1–27

    Article  PubMed  CAS  Google Scholar 

  • Cox JS, Shamu CE, Walter P (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73:1197–1206

    Article  PubMed  CAS  Google Scholar 

  • Evans WH, Ahmad S, Diez J, George CH, Kendall JM, Martin PE (1999) Trafficking pathways leading to the formation of gap junctions. Novartis Found Symp 219:44–54

    Article  PubMed  CAS  Google Scholar 

  • Falk MM, Gilula NB (1998) Connexin membrane protein biosynthesis is influenced by polypeptide positioning within the translocon and signal peptidase access. J Biol Chem 273:7856–7864

    Article  PubMed  CAS  Google Scholar 

  • Falk MM, Kumar NM, Gilula NB (1994) Membrane insertion of gap junction connexins: polytopic channel forming membrane proteins. J Cell Biol 127:343–355

    Article  PubMed  CAS  Google Scholar 

  • Falk MM, Buehler LK, Kumar NM, Gilula NB (1997) Cell-free synthesis of connexins into functional gap junction membrane channels. EMBO J 10:2703–2716

    Article  Google Scholar 

  • Fribley A, Zhang K, Kaufman R (2008) Regulation of Apoptosis by the unfolded protein response. Methods Mol Biol 559:191–204

    Article  CAS  Google Scholar 

  • Gilula NB, Reeves OR, Steinbach A (1972) Metabolic coupling, ionic coupling and cell contacts. Nature 235:262–265

    Article  PubMed  CAS  Google Scholar 

  • Grifa A, Wagner CA, D’Ambrosio L, Melchionda S, Bernardi F, López-Bigas N, Rabionet R, Arbones M, Monica MD, Estivill X, Zelante L, Lang F, Gasparini P (1999) Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet 23:16–18

    PubMed  CAS  Google Scholar 

  • Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269

    Article  PubMed  CAS  Google Scholar 

  • Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM (1997) Connexin26 mutations in hereditary nonsyndromic sensorineural deafness. Nature 387:80–83

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi T, Kimura RS, Paul DL, Adams JC (1995) Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol 191:101–118

    Article  PubMed  CAS  Google Scholar 

  • Koval M, Harley JE, Hick E, Steinberg TH (1997) Connexin46 is retained as monomers in a trans-Golgi compartment of osteoblastic cells. J Cell Biol 137:847–857

    Article  PubMed  CAS  Google Scholar 

  • Krutovskikh V, Yamasaki H (2000) Connexin gene mutations in human genetic diseases. Mut Res 462:197–207

    CAS  Google Scholar 

  • Kumar NM, Friend DS, Gilula NB (1995) Synthesis and assembly of human beta 1 gap junctions in BHK cells by DNA transfection with the human beta 1 cDNA. J Cell Sci 108:3725–3734

    PubMed  CAS  Google Scholar 

  • Laird DW, Castillo M, Kasprzak L (1995) Gap junction turnover, intracellular trafficking, and phosphorylation of connexin43 in brefeldin A-treated rat mammary tumor cells. J Cell Biol 131:1193–1203

    Article  PubMed  CAS  Google Scholar 

  • Lauf U, Giepmans BN, Lopez P, Braconnot S, Chen SC, Falk MM (2002) Dynamic trafficking and delivery of connexons to the plasma membrane and accretion to gap junctions in living cells. Proc Natl Acad Sci USA 99:10446–10451

    Article  PubMed  CAS  Google Scholar 

  • Liu BH, Yu FY, Chan MH, Yang YL (2002) The effects of mycotoxins, Fumonisin B1 and Aflatoxin B1, on primary swine alveolar macrophages. Toxicol Appl Pharmacol 180:197–204

    Article  PubMed  CAS  Google Scholar 

  • López-Bigas N, Melchionda S, Gasparini P, Borragán A, Arbonés ML, Estivill X (2002) A common frameshift mutation and other variants in GJB4 (Connexin 30.3): analysis of hearing impairment families. Hum Mut 19:458

    Article  PubMed  CAS  Google Scholar 

  • Makowski L, Caspar DLD, Phillips WC, Goodenough DA (1997) Gap junction structures. J Cell Biol 74:629–645

    Article  Google Scholar 

  • Musil LS, Goodenough DA (1991) Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junction plaques. J Cell Biol 115:1357–1374

    Article  PubMed  CAS  Google Scholar 

  • Musil LS, Goodenough DA (1993) Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell 74:1065–1077

    Article  PubMed  CAS  Google Scholar 

  • Paulson AF, Lampe PD, Meyer RA, TenBroek E, Atkinson MM, Walseth TF, Johnson RG (2000) Cyclic AMP, LDL trigger a rapid enhancement in gap junction assembly through a stimulation of connexin trafficking. J Cell Sci 113:3037–3049

    PubMed  CAS  Google Scholar 

  • Penuela S, Bhalla R, Gong XQ, Cowan KN, Celetti SJ, Cowan BJ, Bai D, Shao Q, Laired DW (2007) Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J Cell Sci 120:3772–3783

    Article  PubMed  CAS  Google Scholar 

  • Qu C, Gardner P, Schrijver I (2009) The role of the cytoskeleton in the formation of gap junctions by Connexin 30. Exp Cell Res. doi:10.1016/j.yexcr.2009.03.001

  • Richard G (2000) Connexins: a connection with the skin. Exp Dermatol 9:77–96

    Article  PubMed  CAS  Google Scholar 

  • Ron D (2004) Unfolded protein responses. Encycl Biol Chem 4:319–325

    Article  CAS  Google Scholar 

  • Sarma JD, Wang F, Koval M (2002) Targeted gap junction protein constructs reveal connexin-specific differences in oligomerization. J Biol Chem 277:20911–20918

    Article  PubMed  CAS  Google Scholar 

  • Sohl G, Eiberger J, Jung YT, Kozak CA, Willecke K (2001) The mouse gap junction gene connexin29 is highly expressed in sciatic nerve and regulated during brain development. J Biol Chem 382:973–978

    Article  CAS  Google Scholar 

  • Sonntag S, Sohl G, Dobrowolski R, Zhang MT, Winterhager E, Bukauskas FF, Willecke K (2009) Mouse lens connexin23(Gje1) does not form functional gap junction channels but causes enhanced ATP release from HeLa cells. Eur J Cell Bio 88:65–77

    Article  CAS  Google Scholar 

  • Tang W, Zhang Y, Chang Q, Ahmad S, Dahlke I, Yi H, Chen P, Paul DL, Lin X (2006) Connexin29 is highly expressed in cochlear Schwann cells, and it is required for the normal development and function of the auditory nerve of mice. J Neurosci 26(7):1991–1999

    Article  PubMed  CAS  Google Scholar 

  • Wang WH, Yang JJ, Lin YC, Yang JT, Chan CH, Li SY (2010) Identification of novel variants in the Cx29 gene of nonsyndromic hearing loss patients using buccal cells and RFLP method. Audiol Neurootol 15:81–87

    Article  CAS  PubMed  Google Scholar 

  • White TW, Bruzzone R (1996) Multiple connexin proteins in single intercullar channels: connexin compatibility and function consequences. J Bioenerg Biomembr 28:339–350

    Article  PubMed  CAS  Google Scholar 

  • Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737

    Article  PubMed  CAS  Google Scholar 

  • Xia JH, Liu CY, Tang BS, Pan Q, Huang L, Dai HP, Zhang BR, Xie W, Hu DX, Zheng D, Shi XL, Wang DA, Xia K, Yu KP, Liao XD, Feng Y, Yang YF, Xiao JY, Xie DH, Huang JZ (1998) Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet 20:370–373

    Article  PubMed  CAS  Google Scholar 

  • Yang JJ, Liao PJ, Su CC, Li SY (2005) Expression patterns of connexin 29 (GJE1) in mouse and rat cochlea. Biochem Biophys Res Comm 338:723–728

    Article  PubMed  CAS  Google Scholar 

  • Yang JJ, Huang SH, Chou KH, Liao PJ, Su CC, Li SY (2007) Identification of mutations in members of connexin gene family as a cause of nonsyndromic deafness in Taiwan. Audiol Neurootol 12:198–208

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Kaufman RJ (2004) Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem 279:25935–25938

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all the subjects who participated in the present project. This work is supported by the National Science Council, Republic of China (NSC 96-2320-B-040 -021 -MY2; NSC 98-2320-B-040-016-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuan-Yow Li.

Additional information

H.-M. Hong and J.-J. Yang contributed equally to this publication.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, HM., Yang, JJ., Su, CC. et al. A novel mutation in the connexin 29 gene may contribute to nonsyndromic hearing loss. Hum Genet 127, 191–199 (2010). https://doi.org/10.1007/s00439-009-0758-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-009-0758-y

Keywords

Navigation