Skip to main content
Log in

Human Kir2.1 channel carries a transient outward potassium current with inward rectification

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

We have previously reported a depolarization-activated 4-aminopyridine-resistant transient outward K+ current with inward rectification (I to.ir) in canine and guinea pig cardiac myocytes. However, molecular identity of this current is not clear. The present study was designed to investigate whether Kir2.1 channel carries this current in stably transfected human embryonic kidney (HEK) 293 cells using whole-cell patch-clamp technique. It was found that HEK 293 cells stably expressing human Kir2.1 gene had a transient outward current elicited by voltage steps positive to the membrane potential (around −70 mV). The current exhibited a current–voltage relationship with intermediate inward rectification and showed time-dependent inactivation and rapid recovery from inactivation. The half potential (V 0.5) of availability of the current was −49.4 ± 2.1 mV at 5 mM K+ in bath solution. Action potential waveform clamp revealed two components of outward currents; one was immediately elicited and then rapidly inactivated during depolarization, and another was slowly activated during repolarization of action potential. These properties were similar to those of I to.ir observed previously in native cardiac myocytes. Interestingly, inactivation of the I to.ir was strongly slowed by increasing intracellular free Mg2+ (Mg2+ i , from 0.03 to 1.0, 4.0, and 8.0 mM). The component elicited by action potential depolarization increased with the elevation of Mg2+ i . Inclusion of spermine (100 μM) in the pipette solution remarkably inhibited both the I to.ir and steady-state current. These results demonstrate that the Mg2+ i -dependent current carried by Kir2.1 likely is the molecular identity of I to.ir observed previously in cardiac myocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barry DM, Nerbonne JM (1996) Myocardial potassium channels: electrophysiological and molecular diversity. Annu Rev Physiol 58:363–394

    Article  PubMed  CAS  Google Scholar 

  2. Beuckelmann DJ, Nabauer M, Erdmann E (1993) Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res 73:379–385

    PubMed  CAS  Google Scholar 

  3. Boyle WA, Nerbonne JM (1991) A novel type of depolarization-activated K+ current in isolated adult rat atrial myocytes. Am J Physiol Heart Circ Physiol 260:H1236–H1247

    CAS  Google Scholar 

  4. Campbell DL, Qu Y, Rasmusson RL, Strauss HC (1993) The calcium-independent transient outward potassium current in isolated ferret right ventricular myocytes. II. Closed state reverse use- dependent block by 4-aminopyridine. J Gen Physiol 101:603–626

    Article  PubMed  CAS  Google Scholar 

  5. Chen W, Steenbergen C, Levy LA, Vance J, London RE, Murphy E (1996) Measurement of free Ca2+ in sarcoplasmic reticulum in perfused rabbit heart loaded with 1,2-bis(2-amino-5,6-difluorophenoxy)ethane-N,N,N′,N′-tetraacetic acid by 19F NMR. J Biol Chem 271:7398–7403

    Article  PubMed  CAS  Google Scholar 

  6. Coraboeuf E, Carmeliet E (1982) Existence of two transient outward currents in sheep cardiac Purkinje fibers. Pflugers Arch 392:352–359

    Article  PubMed  CAS  Google Scholar 

  7. Dhamoon AS, Jalife J (2005) The inward rectifier current (I K1) controls cardiac excitability and is involved in arrhythmogenesis. Heart Rhythm 2:316–324

    Article  PubMed  Google Scholar 

  8. Dhamoon AS, Pandit SV, Sarmast F, Parisian KR, Guha P, Li Y, Bagwe S, Taffet SM, Anumonwo JMB (2004) Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K+ current. Circ Res 94:1332–1339

    Article  PubMed  CAS  Google Scholar 

  9. Dong MQ, Lau CP, Gao Z, Tseng GN, Li GR (2006) Characterization of recombinant human cardiac KCNQ1/KCNE1 channels (I (Ks)) stably expressed in HEK 293 cells. J Membr Biol 210:183–192

    Article  PubMed  CAS  Google Scholar 

  10. Dukes ID, Morad M (1991) The transient K+ current in rat ventricular myocytes: evaluation of its Ca2+ and Na+ dependence. J Physiol (Lond) 435:395–420

    CAS  Google Scholar 

  11. Ficker E, Taglialatela M, Wible BA, Henley CM, Brown AM (1994) Spermine and spermidine as gating molecules for inward rectifier K channels. Science 266:1068–1072

    Article  PubMed  CAS  Google Scholar 

  12. Gao Z, Sun HY, Lau CP, Chin-Wan FP, Li GR (2007) Evidence for cystic fibrosis transmembrane conductance regulator chloride current in swine ventricular myocytes. J Mol Cell Cardiol 42:98–105

    Article  PubMed  CAS  Google Scholar 

  13. Giles WR, van Ginneken AC (1985) A transient outward current in isolated cells from the crista terminalis of rabbit heart. J Physiol (Lond) 368:243–264

    CAS  Google Scholar 

  14. Headrick JP, Willis RJ (1991) Cytosolic free magnesium in stimulated, hypoxic, and underperfused rat heart. J Mol Cell Cardiol 23:991–999

    Article  PubMed  CAS  Google Scholar 

  15. Ishihara K, Mitsuiye T, Noma A, Takano M (1989) The Mg2+ block and intrinsic gating underlying inward rectification of the K+ current in guinea-pig cardiac myocytes. J Physiol (Lond) 419:297–320

    CAS  Google Scholar 

  16. Jiang B, Sun X, Cao K, Wang R (2002) Endogenous Kv channels in human embryonic kidney (HEK-293) cells. Mol Cell Biochem 238:69–79

    Article  PubMed  CAS  Google Scholar 

  17. Josephson IR, Sanchez-Chapula J, Brown AM (1984) Early outward current in rat single ventricular cells. Circ Res 54:157–162

    PubMed  CAS  Google Scholar 

  18. Kenyon JL, Gibbons WR (1979) 4-Aminopyridine and the early outward current of sheep cardiac Purkinje fibers. J Gen Physiol 73:139–157

    Article  PubMed  CAS  Google Scholar 

  19. Li GR, Feng J, Wang Z, Fermini B, Nattel S (1995) Comparative mechanisms of 4-aminopyridine-resistant Ito in human and rabbit atrial myocytes. Am J Physiol 269:H463–H472

    PubMed  CAS  Google Scholar 

  20. Li GR, Lau CP, Leung TK, Nattel S (2004) Ionic current abnormalities associated with prolonged action potentials in cardiomyocytes from diseased human right ventricles. Heart Rhythm 1:460–468

    Article  PubMed  Google Scholar 

  21. Li GR, Sun H, To J, Tse HF, Lau CP (2004) Demonstration of calcium-activated transient outward chloride current and delayed rectifier potassium currents in Swine atrial myocytes. J Mol Cell Cardiol 36:495–504

    Article  PubMed  CAS  Google Scholar 

  22. Li GR, Yang B, Feng J, Bosch RF, Carrier M, Nattel S (1999) Transmembrane I Ca contributes to rate-dependent changes of action potentials in human ventricular myocytes. Am J Physiol Circ Physiol 276:H98–H106

    CAS  Google Scholar 

  23. Li GR, Feng J, Yue L, Carrier M (1998) Transmural heterogeneity of action potentials and I to1 in myocytes isolated from the human right ventricle. Am J Physiol Heart Circ Physiol 275:H369–H377

    CAS  Google Scholar 

  24. Li GR, Feng J, Yue L, Carrier M, Nattel S (1996) Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circ Res 78:689–696

    PubMed  CAS  Google Scholar 

  25. Li GR, Sun H, Nattel S (1998) Characterization of a transient outward K+ current with inward rectification in canine ventricular myocytes. Am J Physiol Cell Physiol 274:C577–C585

    CAS  Google Scholar 

  26. Li GR, Yang B, Sun H, Baumgarten CM (2000) Existence of a transient outward K+ current in guinea pig cardiac myocytes. Am J Physiol Heart Circ Physiol 279:H130–H138

    PubMed  CAS  Google Scholar 

  27. Martin RL, Barrington PL, Ten Eick RE (1994) A 3,4-diaminopyridine-insensitive, Ca(2+)-independent transient outward K+ current in cardiac ventricular myocytes. Am J Physiol Heart Circ Physiol 266:H1286–H1299

    CAS  Google Scholar 

  28. Martin RL, Koumi S, Ten Eick RE (1995) Comparison of the effects of internal [Mg2+] on I K1 in cat and guinea-pig cardiac ventricular myocytes. J Mol Cell Cardiol 27:673–691

    Article  PubMed  CAS  Google Scholar 

  29. Matsuda H, Oishi K, Omori K (2003) Voltage-dependent gating and block by internal spermine of the murine inwardly rectifying K+ channel, Kir2.1. J Physiol (Lond) 548:361–371

    Article  CAS  Google Scholar 

  30. Matsuda H, Saigusa A, Irisawa H (1987) Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature 325:156–159

    Article  PubMed  CAS  Google Scholar 

  31. Maylie J, Morad M (1984) A transient outward current related to calcium release and development of tension in elephant seal atrial fibres. J Physiol (Lond) 357:267–292

    CAS  Google Scholar 

  32. Murphy E, Steenbergen C, Levy LA, Raju B, London RE (1989) Cytosolic free magnesium levels in ischemic rat heart. J Biol Chem 264:5622–5627

    PubMed  CAS  Google Scholar 

  33. Nichols CG, Makhina EN, Pearson WL, Sha Q, Lopatin AN (1996) Inward Rectification and Implications for Cardiac Excitability. Circ Res 78:1–7

    PubMed  CAS  Google Scholar 

  34. Noble D (1984) The surprising heart: a review of recent progress in cardiac electrophysiology. J Physiol 353:1–50

    PubMed  CAS  Google Scholar 

  35. Raab-Graham KF, Radeke CM, Vandenberg CA (1994) Molecular cloning and expression of a human heart inward rectifier potassium channel. Neuroreport 5:2501–2505

    Article  PubMed  CAS  Google Scholar 

  36. Sanguinetti MC, Jurkiewicz NK (1990) Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96:195–215

    Article  PubMed  CAS  Google Scholar 

  37. Shimoni Y, Clark RB, Giles WR (1992) Role of an inwardly rectifying potassium current in rabbit ventricular action potential. J Physiol 448:709–727

    PubMed  CAS  Google Scholar 

  38. Silver MR, DeCoursey TE (1990) Intrinsic gating of inward rectifier in bovine pulmonary artery endothelial cells in the presence or absence of internal Mg2+. J Gen Physiol 96:109–133

    Article  PubMed  CAS  Google Scholar 

  39. Tang Q, Jin MW, Xiang JZ, Dong MQ, Sun HY, Lau CP, Li GR (2007) The membrane permeable calcium chelator BAPTA-AM directly blocks human ether a-go-go-related gene potassium channels stably expressed in HEK 293 cells. Biochem Pharmacol 74:1596–1607

    Article  PubMed  CAS  Google Scholar 

  40. Tseng GN, Hoffman BF (1989) Two components of transient outward current in canine ventricular myocytes. Circ Res 64:633–647

    PubMed  CAS  Google Scholar 

  41. Whalley DW, Wendt DJ, Starmer CF, Rudy Y, Grant AO (1994) Voltage-independent effects of extracellular K+ on the Na+ current and phase 0 of the action potential in isolated cardiac myocytes. Circ Res 75:491–502

    PubMed  CAS  Google Scholar 

  42. Xie LH, John SA, Weiss JN (2002) Spermine block of the strong inward rectifier potassium channel Kir2.1: dual roles of surface charge screening and pore block. J Gen Physiol 120:53–66

    Article  PubMed  CAS  Google Scholar 

  43. Yue L, Feng J, Li GR, Nattel S (1996) Characterization of an ultrarapid delayed rectifier potassium channel involved in canine atrial repolarization. J Physiol (Lond) 496:647–662

    CAS  Google Scholar 

  44. Yue L, Feng J, Li GR, Nattel S (1996) Transient outward and delayed rectifier currents in canine atrium: properties and role of isolation methods. Am J Physiol Heart Circ Physiol 270:H2157–H2168

    CAS  Google Scholar 

  45. Zaritsky JJ, Redell JB, Tempel BL, Schwarz TL (2001) The consequences of disrupting cardiac inwardly rectifying K(+) current (I(K1)) as revealed by the targeted deletion of the murine Kir2.1 and Kir2.2 genes. J Physiol 533:697–710

    Article  PubMed  CAS  Google Scholar 

  46. Zhabyeyev P, Asai T, Missan S, McDonald TF (2004) Transient outward current carried by inwardly rectifying K+ channels in guinea pig ventricular myocytes dialyzed with low-K+ solution. Am J Physiol Cell Physiol 287:C1396–C1403

    Article  PubMed  CAS  Google Scholar 

  47. Zygmunt AC, Gibbons WR (1992) Properties of the calcium-activated chloride current in heart. J Gen Physiol 99:391–414

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The study was supported in part by a grant from Sun Chieh Yeh Heart Foundation. We appreciate Dr. Carol A. Vandenberg in University of California at Santa Barbara, CA, USA, for providing us human Kir2.1 channel gene. The authors thank Ms Hai-Ying Sun for the excellent technical support and Dr. G. Droogmans in the Department of Physiology, KU Leuven, Leuven, Belgium for the excellent Cabuf software which makes it possible to accurately calculate free Mg2+ concentrations in pipette solutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Rong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, DY., Lau, CP. & Li, GR. Human Kir2.1 channel carries a transient outward potassium current with inward rectification. Pflugers Arch - Eur J Physiol 457, 1275–1285 (2009). https://doi.org/10.1007/s00424-008-0608-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0608-0

Keywords

Navigation