Skip to main content

Advertisement

Log in

Stimulation of aquaporin-5 and transepithelial water permeability in human airway epithelium by hyperosmotic stress

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Osmotic water permeability (P f ) was measured in spheroid-shaped human nasal airway epithelial explants pre-exposed to increasing levels of hyperosmotic stress. The fluid-filled spheroids, derived from nasal polyps, were lined by a single cell layer with the ciliated apical cell membrane facing the outside. The P f was determined from diameter changes of the spheroids in response to changes in bathing medium osmolarity forth and back between 300 and 225 mOsm·l−1. Continuous diameter measurements also allowed determination of spontaneous fluid absorption. Hyperosmotic pretreatment (increase from 300 up to 600 mOsm·l−1) caused a time- and osmolarity-dependent increase (up to ∼1.5 times) in epithelial P f which was of similar magnitude in cystic fibrosis (CF) and non-CF spheroids. The effect saturated at ∼450 mOsm·l−1 and at ∼24 h. Expression of aquaporin-5 (AQP5), studied by immunofluorescence and confocal microscopy, showed an increase in parallel with the increase in P f following hyperosmotic stress. The AQP5 was localized both in cytoplasmic vesicles and in apical cell membranes. Spontaneous fluid absorption rates were equal in CF and non-CF spheroids and were not significantly influenced by hyperosmotic stress. The results suggest that hyperosmotic stress is an important activator of AQP-5 in human airway epithelium, leading to significantly increased transepithelial water permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arima H, Yamamoto N, Sobue K, Umenishi F, Tada T, Katsuya H, Asai K (2003) Hyperosmolar mannitol simulates expression of aquaporins 4 and 9 through a p38 mitogen-activated protein kinase-dependent pathway in rat astrocytes. J Biol Chem 278:44525–44534

    Article  PubMed  CAS  Google Scholar 

  2. Boucher RC (2003) Regulation of airway surface liquid volume by human airway epithelia. Pflugers Arch 445:495–498

    PubMed  CAS  Google Scholar 

  3. Boucher RC (2004) New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Respir J 23:146–158

    Article  PubMed  CAS  Google Scholar 

  4. Burg MB, Kwon ED, Kultz D (1996) Osmotic regulation of gene expression. FASEB J 10:1598–1606

    PubMed  CAS  Google Scholar 

  5. Carter EP, Umenishi F, Matthay MA, Verkman AS (1997) Developmental changes in water permeability across the alveolar barrier in perinatal rabbit lung. J Clin Invest 100:1071–1078

    PubMed  CAS  Google Scholar 

  6. Castillon N, Hinnrasky J, Zahm JM, Kaplan H, Bonnet N, Corlieu P, Klossek JM, Taouil K, Avril-Delplanque A, Peault B, Puchelle E (2002) Polarized expression of cystic fibrosis transmembrane conductance regulator and associated epithelial proteins during the regeneration of human airway surface epithelium in three-dimensional culture. Lab Invest 82:989–998

    PubMed  CAS  Google Scholar 

  7. Cheung KH, Leung CT, Leung GP, Wong PY (2003) Synergistic effects of cystic fibrosis transmembrane conductance regulator and aquaporin-9 in the rat epididymis. Biol Reprod 68:1505–1510

    Article  PubMed  CAS  Google Scholar 

  8. Cohen DM, Wasserman JC, Gullans SR (1991) Immediate early gene and HSP70 expression in hyperosmotic stress in MDCK cells. Am J Physiol 261:C594–C601

    PubMed  CAS  Google Scholar 

  9. Crews A, Taylor AE, Ballard ST (2001) Liquid transport properties of porcine tracheal epithelium. J Appl Physiol 91:797–802

    PubMed  CAS  Google Scholar 

  10. Davies MG, Geddes DM, Alton EFW (2005) The effect of varying tonicity on nasal epithelial ion transport in cystic fibrosis. Am J Respir Care Med 171:760–763

    Article  Google Scholar 

  11. Donaldson SH, Bennett WD, Zeman KL, Knowles MR, Tarran R, Boucher RC (2006) Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med 354:241–250

    Article  PubMed  CAS  Google Scholar 

  12. Farinas J, Kneen M, Moore M, Verkman AS (1997) Plasma membrane water permeability of cultured cells and epithelia measured by light microscopy with spatial filtering. J Gen Physiol 110:283–296

    Article  PubMed  CAS  Google Scholar 

  13. Folkesson HG, Matthay MA, Frigeri A, Verkman AS (1996) Transepithelial water permeability in microperfused distal airways. Evidence for channel-mediated water transport. J Clin Invest 97:664–671

    PubMed  CAS  Google Scholar 

  14. Galcheva-Gargova Z, Derijard B, Wu IH, Davis RJ (1994) An osmosensing signal transduction pathway in mammalian cells. Science 265:806–808

    Article  PubMed  CAS  Google Scholar 

  15. Gresz V, Kwon T-H, Gong H, Agre P, Steward MC, King L, Nielsen S (2004) Immunolocalization of AQP-5 in rat parotid and submandibular salivary glands after stimulation or inhibition of secretion in vivo. Am J Physiol 287:G151–G161

    CAS  Google Scholar 

  16. Han J, Lee JD, Bibbs L, Ulevitch RJ (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265:808–811

    Article  PubMed  CAS  Google Scholar 

  17. Hasler U, Vinciguerra M, Vandewalle A, Martin PY, Feraille E (2005) Dual effects of hypertonicity on aquaporin-2 expression in cultured renal collecting duct principal cells. J Am Soc Nephrol

  18. Hoffert JD, Leitch V, Agre P, King LS (2000) Hypertonic induction of aquaporin-5 expression through an ERK-dependent pathway. J Biol Chem 275:9070–9077

    Article  PubMed  CAS  Google Scholar 

  19. Hwang SM, Lee RH, Song JM, Yoon S, Kim YS, Lee SJ, Kang SK, Jung JS (2002) Expression of aquaporin-5 and its regulation in skeletal muscle cells. Exp Mol Med 34:69–74

    PubMed  CAS  Google Scholar 

  20. Jenq W, Mathieson IM, Ihara W, Ramirez G (1998) Aquaporin-1: an osmoinducible water channel in cultured mIMCD-3 cells. Biochem Biophys Res Commun 245:804–809

    Article  PubMed  CAS  Google Scholar 

  21. Krane CM, Fortner CN, Hand AR, McGraw DW, Lorenz JN, Wert SE, Towne JE, Paul RJ, Whitsett JA, Menon AG (2001) Aquaporin 5-deficient mouse lungs are hyperresponsive to cholinergic stimulation. Proc Natl Acad Sci U S A 98:14114–14119

    Article  PubMed  CAS  Google Scholar 

  22. Kreda SM, Gynn MC, Fenstermacher DA, Boucher RC, Gabriel SE (2001) Expression and localization of epithelial aquaporins in the adult human lung. Am J Respir Cell Mol Biol 24:224–234

    PubMed  CAS  Google Scholar 

  23. Lee MD, King LS, Nielsen S, Agre P (1997) Genomic organization and developmental expression of aquaporin-5 in lung. Chest 111:111S–113S

    PubMed  CAS  Google Scholar 

  24. Leitch V, Agre P, King LS (2001) Altered ubiquitination and stability of aquaporin-1 in hypertonic stress. Proc Natl Acad Sci U S A 98:2894–2898

    Article  PubMed  CAS  Google Scholar 

  25. Lu J, Park JH, Liu AY, Cnhen KY (2000) Activation of heat shock factor 1 by hyperosmotic or hypo-osmotic stress is drastically attenuated in normal human fibroblasts during senescence. J Cell Physiol 184:183–190

    Article  PubMed  CAS  Google Scholar 

  26. Marsh DJ, Jensen PK, Spring KR (1985) Computer-based determination of size and shape in living cells. J Microsc 137 (Pt 3):281–292

    PubMed  CAS  Google Scholar 

  27. Matsui H, Davis CW, Tarran R, Boucher RC (2000) Osmotic water permeabilities of cultured, well-differentiated normal and cystic fibrosis airway epithelia. J Clin Invest 105:1419–1427

    Article  PubMed  CAS  Google Scholar 

  28. Matsuzaki T, Suzuki T, Takata K (2001) Hypertonicity-induced expression of aquaporin 3 in MDCK cells. Am J Physiol Cell Physiol 281:C55–C63

    PubMed  CAS  Google Scholar 

  29. Nielsen S, King LS, Christensen BM, Agre P (1997) Aquaporins in complex tissues. II. Subcellular distribution in respiratory and glandular tissues of rat. Am J Physiol 273:C1549–C1561

    PubMed  CAS  Google Scholar 

  30. Pedersen PS, Frederiksen O, Holstein-Rathlou NH, Larsen PL, Qvortrup K (1999) Ion transport in epithelial spheroids derived from human airway cells. Am J Physiol 276:L75–L80

    PubMed  CAS  Google Scholar 

  31. Pedersen PS, Holstein-Rathlou NH, Larsen PL, Qvortrup K, Frederiksen O (1999) Fluid absorption related to ion transport in human airway epithelial spheroids. Am J Physiol 277:L1096–L1103

    PubMed  CAS  Google Scholar 

  32. Pedersen PS, Procida K, Larsen PL, Holstein-Rathlou NH, Frederiksen O (2005) Water permeability in human airway epithelium. Pflugers Arch 451:464–473

    Article  PubMed  CAS  Google Scholar 

  33. Pilewski JM, Frizzell RA (1999) Role of CFTR in airway disease. Physiol Rev 79:S215–S255

    PubMed  CAS  Google Scholar 

  34. Schreiber R, Nitschke R, Greger R, Kunzelmann K (1999) The cystic fibrosis transmembrane conductance regulator activates aquaporin 3 in airway epithelial cells. J Biol Chem 274:11811–11816

    Article  PubMed  CAS  Google Scholar 

  35. Storm R, Klussmann E, Geelhaar A, Rosenthal W, Maric K (2003) Osmolality and solute composition are strong regulators of AQP2 expression in renal principal cells. Am J Physiol Renal Physiol 284:F189–F198

    PubMed  CAS  Google Scholar 

  36. Sugiyama Y, Ota Y, Hara M, Inoue S (2001) Osmotic stress up-regulates aquaporin-3 gene expression in cultured human keratinocytes. Biochim Biophys Acta 1522:82–88

    PubMed  CAS  Google Scholar 

  37. Umenishi F, Schrier RW (2002) Identification and characterization of a novel hypertonicity-responsive element in the human aquaporin-1 gene. Biochem Biophys Res Commun 292:771–775

    Article  PubMed  CAS  Google Scholar 

  38. Umenishi F, Schrier RW (2003) Hypertonicity-induced aquaporin-1 (AQP1) expression is mediated by the activation of MAPK pathways and hypertonicity-responsive element in the AQP1 gene. J Biol Chem 278:15765–15770

    Article  PubMed  CAS  Google Scholar 

  39. Verkman AS, Matthay MA, Song Y (2000) Aquaporin water channels and lung physiology. Am J Physiol Lung Cell Mol Physiol 278(5):L867–L879 278:L867–L879 May

    PubMed  CAS  Google Scholar 

  40. Widdicombe JH, Bastacky SJ, Wu DX, Lee CY (1997) Regulation of depth and composition of airway surface liquid. Eur Respir J 10:2892–2897

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff from the ENT surgery RH, Dr. N. Rasmussen and Dr. H. Nielsen for their help during this study. This work was supported by grants from the Danish Research Council (SSVF), the Novo-Nordisk Foundation, the Lundbeck Foundation, Zealand Pharmaceutical and the Velux Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Steen Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, P.S., Braunstein, T.H., Jørgensen, A. et al. Stimulation of aquaporin-5 and transepithelial water permeability in human airway epithelium by hyperosmotic stress. Pflugers Arch - Eur J Physiol 453, 777–785 (2007). https://doi.org/10.1007/s00424-006-0157-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0157-3

Keywords

Navigation