Skip to main content
Log in

Expression and subcellular localization of Spred proteins in mouse and human tissues

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Spred-1 and Spred-2 (Sprouty-related protein with an EVH1 domain) are recently described members of the EVH1 (Ena/VASP-homology domain 1) family. Both Spred-1 and Spred-2 are membrane-associated substrates of receptor tyrosine kinases and they act as negative regulators of the Ras pathway upon growth factor stimulation. Since the Spred family members seem to exert overlapping molecular functions, the isotype-specific function of each member remains enigmatic. To date, no comprehensive expression profiling of Spred proteins has been shown. Therefore, we compared mRNA and protein expression patterns of Spred-1 and Spred-2 systematically in mouse organs. Furthermore, we focused on the tissue-specific expression of Spred-2 in adult human tissues, the subcellular localization, and the potential role of Spred-2 in the organism. Our studies show that expression patterns of Spred-1 and Spred-2 differ markedly among various tissues and cell types. In mouse, Spred-1 and Spred-2 were found to be expressed predominantly in brain, whereas Spred-2 was found to be more widely expressed in various adult tissues than Spred-1. In humans, Spred-2 was found to be strongly expressed in glandular epithelia and, at the subcellular level, its immunoreactivity was associated with secretory vesicles. Using confocal microscopy we found Spred-2 to be strongly colocalized with Rab11 and, to a lesser extent, with Rab5a GTPase, an observation that was not made for Spred-1. We conclude that the two members of the recently discovered Spred protein family, Spred-1 and Spred-2, show a highly specific expression pattern in various tissues reflecting a specific physiological role for the individual Spred isoforms in these tissues. Furthermore, it becomes most likely that Spred-2 is involved in the regulation of secretory pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–M
Fig. 2A, B
Fig. 3A–C
Fig. 4A–H
Fig. 5A–F
Fig. 6A–F
Fig. 7A–D
Fig. 8A–H

Similar content being viewed by others

References

  • Ball LJ, Jarchau T, Oschkinat H, Walter U (2002) EVH1 domains: structure, function and interactions. FEBS Lett 513:45–52

    Article  CAS  PubMed  Google Scholar 

  • Cavalli V, Vilbois F, Corti M, Marcote MJ, Tamura K, Karin M, Arkinstall S, Gruenberg J (2001) The stress-induced MAP kinase p38 regulates endocytic trafficking via the GDI:Rab5 complex. Mol Cell 7:421–432

    CAS  PubMed  Google Scholar 

  • Chen W, Feng Y, Chen D, Wandinger-Ness A (1998) Rab11 is required for trans-Golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor. Mol Biol Cell 9:3241–3257

    CAS  PubMed  Google Scholar 

  • de Maximy AA, Nakatake Y, Moncada S, Itoh N, Thiery JP, Bellusci S (1999) Cloning and expression pattern of a mouse homologue of Drosophila Sprouty in the mouse embryo. Mech Dev 81:213–216

    Article  PubMed  Google Scholar 

  • DeMille MM, Kimmel BE, Rubin GM (1996) A Drosophila gene regulated by rough and glass shows similarity to Ena and VASP. Gene 183:103–108

    Article  CAS  PubMed  Google Scholar 

  • Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA (1998) Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92:253–263

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto S, Nakano H, Singh G, Katyal S (2002) Expression of Spred and Sprouty in developing rat lung. Mech Dev 119:S303–S309

    Article  PubMed  Google Scholar 

  • Kato A, Ozawa F, Saitoh Y, Hirai K, Inokuchi K (1997) vesl, a gene encoding VASP/Ena family related protein, is upregulated during seizure, long-term potentiation and synaptogenesis. FEBS Lett 412:183–189

    CAS  PubMed  Google Scholar 

  • Kato R, Nonami A, Taketomi T, Wakioka T, Kuroiwa A, Matsuda Y, Yoshimura A (2003) Molecular cloning of mammalian Spred-3 which suppresses tyrosine kinase-mediated Erk activation. Biochem Biophys Res Commun 302:767–772

    Article  CAS  PubMed  Google Scholar 

  • Kramer S, Okabe M, Hacohen N, Krasnow MA, Hiromi Y (1999) Sprouty: a common antagonist of FGF and EGF signaling pathways in Drosophila. Development 126:2515–2525

    CAS  PubMed  Google Scholar 

  • Lim J, Wong ES, Ong SH, Yusoff P, Low BC, Guy GR (2000) Sprouty proteins are targeted to membrane ruffles upon growth factor receptor tyrosine kinase activation. Identification of a novel translocation domain. J Biol Chem 275:32837–32845

    Article  CAS  PubMed  Google Scholar 

  • Lim J, Yusoff P, Wong ES, Chandramouli S, Lao DH, Fong CW, Guy GR (2002) The cysteine-rich Sprouty translocation domain targets mitogen-activated protein kinase inhibitory proteins to phosphatidylinositol 4,5-bisphosphate in plasma membranes. Mol Cell Biol 22:7953–7966

    Article  CAS  PubMed  Google Scholar 

  • Machesky LM, Way M (1998) Actin branches out. Nature 394:125–126

    Article  CAS  PubMed  Google Scholar 

  • Minowada G, Jarvis LA, Chi CL, Neubuser A, Sun X, Hacohen N, Krasnow MA, Martin GR (1999) Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126:4465–4475

    CAS  PubMed  Google Scholar 

  • Miyoshi K, Wakioka T, Nishinakamura H, Kamio M, Yang L, Inoue M, Hasegawa M, Yonemitsu Y, Komiya S, Yoshimura A (2004) The Sprouty-related protein, Spred, inhibits cell motility, metastasis, and Rho-mediated actin reorganization. Oncogene 23:5567–5576

    Article  CAS  PubMed  Google Scholar 

  • Nagai K, Thogersen HC (1987) Synthesis and sequence-specific proteolysis of hybrid proteins produced in Escherichia coli. Methods Enzymol 153:461–481

    CAS  PubMed  Google Scholar 

  • Niebuhr K, Ebel F, Frank R, Reinhard M, Domann E, Carl UD, Walter U, Gertler FB, Wehland J, Chakraborty T (1997) A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J 16:5433–5444

    Article  CAS  PubMed  Google Scholar 

  • Novick P, Zerial M (1997) The diversity of Rab proteins in vesicle transport. Curr Opin Cell Biol 9:496–504

    Article  CAS  PubMed  Google Scholar 

  • Reich A, Sapir A, Shilo B (1999) Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development 126:4139–4147

    CAS  PubMed  Google Scholar 

  • Reinhard M, Giehl K, Abel K, Haffner C, Jarchau T, Hoppe V, Jockusch BM, Walter U (1995) The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO J 14:1583–1589

    CAS  PubMed  Google Scholar 

  • Reinhard M, Rudiger M, Jockusch BM, Walter U (1996) VASP interaction with vinculin: a recurring theme of interactions with proline-rich motifs. FEBS Lett 399:103–107

    Article  CAS  PubMed  Google Scholar 

  • Reinhard M, Jarchau T, Walter U (2001) Actin-based motility: stop and go with Ena/VASP proteins. Trends Biochem Sci 26:243–249

    Article  CAS  PubMed  Google Scholar 

  • Renfranz PJ, Beckerle MC (2002) Doing (F/L)PPPPs: EVH1 domains and their proline-rich partners in cell polarity and migration. Curr Opin Cell Biol 14:88–103

    Article  CAS  PubMed  Google Scholar 

  • Samarin S, Romero S, Kocks C, Didry D, Pantaloni D, Carlier MF (2003) How VASP enhances actin-based motility. J Cell Biol 163:131–142

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Taketomi T, Wakioka T, Kato R, Yoshimura A (2001) Identification of a dominant negative mutant of Sprouty that potentiates fibroblast growth factor- but not epidermal growth factor-induced ERK activation. J Biol Chem 276:36804–36808

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Taketomi T, Kato R, Saeki K, Nonami A, Sasaki M, Kuriyama M, Saito N, Shibuya M, Yoshimura A (2003) Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nat Cell Biol 5:427–432

    Article  CAS  PubMed  Google Scholar 

  • Schuh K, Cartwright EJ, Jankevics E, Bundschu K, Liebermann J, Williams JC, Armesilla AL, Emerson M, Oceandy D, Knobeloch KP, Neyses L (2004) Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J Biol Chem 279:28220–28226

    Article  CAS  PubMed  Google Scholar 

  • Sönnichsen B, De Renzis S, Nielsen E, Rietdorf J, Zerial M (2000) Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol 149:901–914

    Article  CAS  PubMed  Google Scholar 

  • Tefft JD, Lee M, Smith S, Leinwand M, Zhao J, Bringas P Jr, Crowe DL, Warburton D (1999) Conserved function of mSpry-2, a murine homolog of Drosophila Sprouty, which negatively modulates respiratory organogenesis. Curr Biol 9:219–222

    Article  CAS  PubMed  Google Scholar 

  • Ullrich O, Reinsch S, Urbé S, Zerial M, Parton RG (1996) Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol 135:913–924

    Article  Google Scholar 

  • Urbé S, Huber LA, Zerial M, Tooze SA, Parton RG (1993) Rab11, a small GTPase associated with both constitutive and regulated secretory pathways in PC12 cells. FEBS Lett 334:175–182

    Article  PubMed  Google Scholar 

  • Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K, Tsuneoka M, Komiya S, Baron R, Yoshimura A (2001) Spred is a Sprouty-related suppressor of Ras signalling. Nature 412:647–651

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank U. Kämmerer, (Frauenklinik, University of Würzburg) for help with the decidua and skin tissues and Stepan Gambaryan for help with organ sections and immunohistochemistry. We specially thank M. Zerial and B. Sönnichsen for providing the EGFR-Rab11 and EGFR-Rab5a expression plasmids. The excellent technical assistance of Lilo Fischer is gratefully acknowledged. These studies were supported by grants from the Deutsche Forschungsgemeinschaft (SFB 487, 355).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Schuh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelhardt, C.M., Bundschu, K., Messerschmitt, M. et al. Expression and subcellular localization of Spred proteins in mouse and human tissues. Histochem Cell Biol 122, 527–538 (2004). https://doi.org/10.1007/s00418-004-0725-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0725-6

Keywords

Navigation