Skip to main content
Log in

Variation of illite/muscovite 40Ar/39Ar age spectra during progressive low-grade metamorphism: an example from the US Cordillera

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

40Ar/39Ar step-heating data were collected from micron to submicron grain-sizes of correlative illite- and muscovite-rich Cambrian pelitic rocks from the western United States that range in metamorphic grade from the shallow diagenetic zone (zeolite facies) to the epizone (greenschist facies). With increasing metamorphic grade, maximum ages from 40Ar/39Ar release spectra decrease, as do total gas ages and retention ages. Previous studies have explained similar results as arising dominantly or entirely from the dissolution of detrital muscovite and precipitation/recrystallization of neo-formed illite. While recognizing the importance of these processes in evaluating our results, we suggest that the inverse correlation between apparent age and metamorphic grade is controlled, primarily, by thermally activated volume diffusion, analogous to the decrease in apparent ages with depth observed for many thermochronometers in borehole experiments. Our results suggest that complete resetting of the illite/muscovite Ar thermochronometer occurs between the high anchizone and epizone, or at roughly 300 °C. This empirical result is in agreement with previous calculations based on muscovite diffusion parameters, which indicate that muscovite grains with radii of 0.05–2 μm should have closure temperatures between 250 and 350 °C. At high anchizone conditions, we observe a reversal in the age/grain-size relationship (the finest grain-size produces the oldest apparent age), which may mark the stage in prograde subgreenschist facies metamorphism of pelitic rocks at which neo-formed illite/muscovite crystallites typically surpass the size of detrital muscovite grains. It is also approximately the stage at which neo-formed illite/muscovite crystallites develop sufficient Ar retentivity to produce geologically meaningful 40Ar/39Ar ages. Results from our sampling transect of Cambrian strata establish a framework for interpreting illite/muscovite 40Ar/39Ar age spectra at different stages of low-grade metamorphism and also illuminate the transformation of illite to muscovite. At Frenchman Mtn., NV, where the Cambrian Bright Angel Formation is at zeolite facies conditions, illite/muscovite 40Ar/39Ar data suggest a detrital muscovite component with an apparent age ≥967 Ma. The correlative Carrara Fm. is at anchizone conditions in the Panamint and Resting Spring Ranges of eastern California, and in these locations, illite/muscovite 40Ar/39Ar data suggest an early Permian episode of subgreenschist facies metamorphism. The same type of data from equivalent strata at epizone conditions (greenschist facies) in the footwall of the Bullfrog/Fluorspar Canyon detachment in southern Nevada reveals a period of slow-to-moderate Late Cretaceous cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Applegate JDR, Walker JD, Hodges KV (1992) Late Cretaceous extensional unroofing in the Funeral Mountains metamorphic core complex, California. Geology 20:519–522

    Article  Google Scholar 

  • Aronson JL, Hower J (1976) Mechanism of burial metamorphism of argillaceous sediment: 2. Radiogenic argon evidence. Geol Soc Am Bull 87:738–744

    Article  Google Scholar 

  • Ayers JC, Miller C, Gorisch B, Milleman J (1999) Textural development of monazite during high-grade metamorphism: hydrothermal growth kinetics, with implications for U, Th-Pb geochronology. Am Mineral 84:1766–1780

    Google Scholar 

  • Beyene MA (2011) Mesozoic burial, mesozoic and cenozoic exhumation of the Funeral Mountains core complex, Death Valley, southern California (PhD thesis), University of Nevada, Las Vegas, p 349

  • Burchfiel BC, Davis GA (1972) Structural framework and evolution of the southern part of the Cordilleran Orogen, western United States. Am J Sci 272:97–118

    Article  Google Scholar 

  • Burchfiel BC, Cowan DS, Davis GA (1992) Tectonic overview of the Cordilleran orogen in the western U. S. In: Burchfiel BC, Lipman PW, Zoback ML (eds), The Cordilleran Orogen: Conterminous U. S.: The Geology of North America, Vol G-3, Decade of North American Geology, Geological Society of America, Boulder, pp 407–480

  • Catlos EJ, Gilley LD, Harrison TM (2002) Interpretation of monazite ages obtained via in situ analysis. Chem Geol 188:193–215

    Article  Google Scholar 

  • Chapman AD, Saleeby JB, Wood DJ, Piasecki A, Kidder S, Ducea MN, Farley KA (2012) Late Cretaceous gravitational collapse of the southern Sierra Nevada batholith, California. Geosphere 8:314–341

    Article  Google Scholar 

  • Clauer N, Chaudhuri S (1996) Inter-basinal comparison of the diagenetic evolution of illite/smectite minerals in buried shales on the basis of K–Ar systematics. Clays Clay Mineral 44:818–824

    Article  Google Scholar 

  • Clauer N, Środon J, Francu J, Šucha V (1997) K–Ar dating of illite fundamental particles separated from illite-smectite. Clay Mineral 32:181–196

    Article  Google Scholar 

  • Cosca M, Stunitz H, Bourgeix A-L, Lee JP (2011) 40Ar* loss in experimentally deformed muscovite and biotite with implications for 40Ar/39Ar geochronology of naturally deformed rocks. Geochim Cosmochim Acta 75:7759–7778

    Article  Google Scholar 

  • Dallmeyer RD, Takasu A (1992) 40Ar/39Ar ages of detrital muscovite and whole-rock slate/phyllite, Narragansett Basin, RI-MA, USA: Implications for rejuvenation during very low-grade metamorphism. Contribut Mineral Petrol 110:515–527

    Article  Google Scholar 

  • Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contribut Mineral Petrol 40:259–274

    Article  Google Scholar 

  • Dong H, Hall CM, Peacor DR, Halliday AN (1995) Mechanisms of argon retention in clays revealed by laser 40Ar-39Ar dating. Science 267:355–359

    Article  Google Scholar 

  • Dong H, Hall CM, Halliday AN, Peacor DR, Merriman RJ, Roberts B (1997) 40Ar/39Ar of Late Caledonian (Acadian) metamorphism and cooling of K-bentonites and slates from the Welsh Basin, UK. Earth Planet Sci Lett 150:337–351

    Article  Google Scholar 

  • Dong H, Hall CM, Peacor DR, Halliday AN, Pevear DR (2000) Thermal 40Ar/39Ar separation of diagenetic from detrital illitic clays in Gulf Coast shales. Earth Planet Sci Lett 175:309–325

    Article  Google Scholar 

  • Duvall AR, Clark MK, van der Pluijm BA, Li C (2011) Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth Planet Sci Lett 304:520–526

    Article  Google Scholar 

  • Eberl DE, Środoń J (1988) Ostwald ripening and interparticle-diffraction effects for illite crystals. Am Mineral 73:1335–1345

    Google Scholar 

  • Eberl DE, Środoń J, Kralik M, Taylor BE, Peterman ZE (1990) Ostwald ripening of clays and metamorphic minerals. Science 248:474–477

    Article  Google Scholar 

  • Egawa K, Lee YI (2011) K–Ar dating of illites for time constraint on tectonic burial metamorphism of the Jurassic Nampo Group (West Korea). Geosci J 15:131–135

    Article  Google Scholar 

  • Farley KA, Wolf RA, Silver LT (1996) The effects of long alpha-stopping distances on (U–Th)/He ages. Geochim Cosmochim Acta 60:4223–4229

    Article  Google Scholar 

  • Friedmann SJ, Davis GA, Fowler TK (1996) Geometry, paleodrainage, and geologic rates from the Miocene Shadow Valley supradetachment basin, eastern Mojave Desert, California. In: Beratan KK (ed), Reconstructing the history of Basin and Range extension using sedimentology and stratigraphy, Geological Society of America Special Paper 303, pp 85–105

  • Gehrels GE, Dickinson WR, Ross GM, Stewart JH, Howell DG (1995) Detrital zircon reference for Cambrian to Triassic miogeoclinal strata of western North America. Geology 23:831–834

    Article  Google Scholar 

  • Gehrels GE, Blakey R, Karlstrom KE, Timmons JM, Dickinson B, Pecha M (2011) Detrital zircon U–Pb geochronology of Paleozoic strata in the Grand Canyon, Arizona. Lithosphere. doi:10.1130/L121.1

  • Gleadow AJW, Duddy IR, Green PF, Hegarty KA (1986) Fission track lengths in the apatite annealing zone and the interpretation of mixed ages. Earth Planet Sci Lett 78:245–254

    Article  Google Scholar 

  • Grathoff GH, Moore DM (1996) Illite polytype quantification using WILDFIRE calculated X-ray diffraction patterns. Clays Clay Mineral 44:835–842

    Article  Google Scholar 

  • Grathoff GH, Moore DM, Hay RL, Wemmer K (2001) Origin of illite in the lower Paleozoic of the Illinois basin: evidence for brine migrations. Geol Soc Am Bull 113:1092–1104

    Article  Google Scholar 

  • Haines SH, van der Pluijm BA (2010) Dating the detachment fault system of the Ruby Mountains, Nevada: significance for the kinematics of low-angle normal faults, vol 29, doi:10.1029/2009TC002552

  • Hall CM, Higueras PL, Kesler SE, Lunar R, Dong H, Halliday AN (1997) Dating of alteration episodes related to mercury mineralization in the Almadén district, Spain. Earth Planet Sci Lett 148:287–298

    Article  Google Scholar 

  • Hall CM, Kesler SE, Simon G, Fortuna J (2000) Overlapping Cretaceous and Eocene alteration, Twin Creeks Carlin-type deposit, Nevada. Econ Geol 95:1739–1752

    Google Scholar 

  • Halliday AN (1978) 40Ar-39Ar stepheating studies of clay concentrates from Irish orebodies. Geochim Cosmochim Acta 42:1851–1858

    Article  Google Scholar 

  • Hames WE, Bowring SA (1994) An empirical evaluation of the argon diffusion geometry in muscovite. Earth Planet Sci Lett 124:161–167

    Article  Google Scholar 

  • Hames WE, Cheney JT (1997) On the loss of 40Ar* from muscovite during polymetamorphism. Geochim Cosmochim Acta 61:3863–3872

    Article  Google Scholar 

  • Harrison TM, Grove M, Lovera OM, Zeitler PK (2005) Continuous thermal histories from inversion of closure profiles. Rev Mineral Geochem 58:389–409

    Article  Google Scholar 

  • Harrison TM, Célérier J, Aikman AB, Hermann J, Heizler MT (2009) Diffusion of 40Ar in muscovite. Geochim Cosmochim Acta 73:1039–1051

    Article  Google Scholar 

  • Hnat JS (2009) Kinematic and temporal evolution of the southern Appalachian foreland fold-thrust belt: Constraints from structural, magnetic and radiometric analyses (Ph.D. thesis): Ann Arbor, University of Michigan, p 286

  • Hoisch TD (2000) Conditions of metamorphism in lower plate rocks at Bare Mountain Nevada–implications for extensional faulting, In: Whitney JW, Keefer WR (eds), Geological and geophysical characterization studies of Yucca Mountain, Nevada, A potential high-level radioactive-waste repository: U.S. Geological Survey Digital Data Series 058, CD-ROM Chapter B

  • Hoisch TD, Heizler MT, Zartman RE (1997) Timing of detachment faulting in the Bullfrog Hills and Bare Mountain area, southwest Nevada: inferences from 40Ar/39Ar, K–Ar, U–Pb, and fission-track thermochronology. J Geophys Res 102:2815–2833

    Article  Google Scholar 

  • House MA, Farley KA, Kohn BP (1999) An empirical test of helium diffusion in apatite, Borehole data from the Otway basin, Australia. Earth Planet Sci Lett 170:463–474

    Article  Google Scholar 

  • Hower J, Hurley PM, Pinson WH, Fairbairn HW (1963) The dependence of K–Ar age on the mineralogy of various particle size ranges in a shale. Geochim Cosmochim Acta 27:405–410

    Article  Google Scholar 

  • Hunziker JC, Frey M, Clauer N, Dallmeyer RD, Friedrichsen H, Flehmig W, Hochstrasser K, Roggwiler P, Schwander H (1986) The evolution of illite to muscovite, mineralogical and isotopic data from the Glarus Alps, Switzerland. Contribut Mineral Petrol 92:157–180

    Article  Google Scholar 

  • Hurley PM, Hunt JM, Pinson WH, Fairbain HW (1963) K–Ar age values on the clay fractions in dated shales. Geochim Cosmochim Acta 27:279–284

    Article  Google Scholar 

  • Inoue A, Velde B, Meuner A, Touchard G (1988) Mechanism of illite formation during smectite-to-illite conversion in a hydrothermal system. Am Mineral 73:1325–1334

    Google Scholar 

  • Jaboyedoff M, Cosca MA (1999) Dating incipient metamorphism using 40Ar/39Ar geochronology and XRD modeling: a case study from the Swiss Alps. Contribut Mineral Petrol 135:93–113

    Article  Google Scholar 

  • Ji J, Browne PRL (2000) Relationship between illite crystallinity and temperature in active geothermal systems of New Zealand. Clays Clay Mineral 48:139–144

    Article  Google Scholar 

  • Jiang W-T, Peacor DR, Árkai P, Tόth M, Kim JW (1997) TEM and XRD determination of crystallite size and lattice strain as a function of illite crystallinity in pelitic rocks. J Metamorph Geol 15:267–281

    Article  Google Scholar 

  • Kapusta Y, Steinitz G, Akkerman A, Sandler A, Kotlarsky P, Nagler A (1997) Monitoring the deficit of 39Ar in irradiated clay fractions and glauconites, Modeling and analytical procedure. Geochimica et Cosmochimica Acta 61:4671–4678

    Article  Google Scholar 

  • Kim J-W, Peacor DR (2002) Crystal-size distributions of clays during episodic diagenesis: the Salton Sea geothermal system. Clays Clay Mineral 50:371–380

    Article  Google Scholar 

  • Kingsbury JA, Miller CF, Wooden JL, Harrison TM (1993) Monazite paragenesis and U–Pb systematics in rocks of the eastern Mojave Desert, California, USA: implications for thermochronometry. Chem Geol 110:147–167

    Article  Google Scholar 

  • Kirschner DL, Cosca MA, Masson H, Hunziker JC (1996) Staircase 40Ar/39Ar spectra of fine-grained white mica: timing and duration of deformation and empirical constraints on argon diffusion. Geology 24:747–750

    Article  Google Scholar 

  • Kramar N, Cosca MA, Hunziker JC (2001) Heterogeneous 40Ar* distributions in naturally deformed muscovite: in situ UV-laser ablation evidence for microstructurally controlled intragrain diffusion: Earth Planet Sci 192: 377–388

    Google Scholar 

  • Kübler B (1967) La cristallinité de l’illite et les zones tout á fait supérieures du métamorphisme, in Etages Tectoniques, Colloque de Neuchâtel 1966, Université Neuchâtel, à la Baconnière. Neuchâtel, Switzerland

    Google Scholar 

  • Kübler B, Jaboyedoff M (2000) Illite crystallinity. Comptes Rendus de l’Académie des Sciences 331:75–89

    Google Scholar 

  • Lee JH, Ahn JO, Peacor DR (1985) Textures in layered silicates. Progressive changes through diagenesis and low-temperature metamorphism: Journal of Sedimentary Petrology 55:532–540

    Google Scholar 

  • Livi KJT, Veblen DR, Ferry JM, Frey M (1997) Evolution of 2:1 layered silicates in low-grade metamorphosed Liassic shales of Central Switzerland. J Metamorph Geol 15:323–344

    Article  Google Scholar 

  • Markley MJ, Teyssier C, Cosca M (2002) The relation between grain size and 40Ar/39Ar date for Alpine white mica from the Siviez-Mischabel Nappe, Switzerland. J Struct Geol 24:1937–1955

    Article  Google Scholar 

  • McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method, 2nd edn. Oxford University Press, New York, p 269

    Google Scholar 

  • Merriman RJ, Frey M (1999) Pattern of very low-grade metamorphism in metapelitic rocks. In: Frey M, Robinson D (eds) Low-grade metamorphism. Blackwell Science, Oxford, pp 61–107

    Google Scholar 

  • Merriman RJ, Peacor DR (1999) Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. In: Frey M, Robinson D (eds) Low-grade metamorphism. Blackwell Science, Oxford, pp 10–60

    Google Scholar 

  • Merriman RJ, Roberts B, Peacor DR (1990) A transmission electron microscope study of white mica crystallite size distribution in a mudstone to slate transitional sequence, North Wales, UK. Contribut Mineral Petrol 106:27–40

    Article  Google Scholar 

  • Middleton LT, Elliott DK, Morales M (2003) Tonto Group. In: Beus SS, Morales M (eds) Grand canyon geology. Oxford University Press, New York, pp 163–179

    Google Scholar 

  • Moore DM, Reynolds RC (1997) X-ray diffraction and the identification and analysis of clay minerals, 2nd edn. Oxford University Press, New York, p 378

    Google Scholar 

  • Mulch A, Cosca MA (2004) Recrystallization or cooling ages: in situ UV-laser 40Ar/39Ar geochronology of muscovite in mylonitic rocks. J Geol Soc 161:573–582

    Article  Google Scholar 

  • Mulch A, Cosca MA, Handy MR (2002) In situ UV-laser 40Ar/39Ar geochronology of a micaceous mylonite: an example of defect-enhanced argon loss. Contribut Mineral Petrol 142:738–752

    Article  Google Scholar 

  • Onstott TC, Mueller C, Vrolijk PJ, Pevear DR (1997) Laser 40Ar/39Ar microprobe analysis of fine-grained illite. Geochim Cosmochim Acta 61:3851–3861

    Article  Google Scholar 

  • Ostwald W (1900) Über die vermeintliche Isomerie des rotten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper. Zeitschrift für Physikalische Chemie, Stöchiometrie und Verwandschaftslehre 34:495–503

    Google Scholar 

  • Parry WT, Bunds MP, Bruhn RL, Hall CM, Murphy JM (2001) Mineralogy, 40Ar/39Ar dating and apatite fission track dating of rocks along the Castle Mountain fault, Alaska. Tectonophysics 337:149–172

    Article  Google Scholar 

  • Perry EA (1974) Diagenesis and the K–Ar dating of shales and clay minerals. Geol Soc Am Bull 85:827–830

    Article  Google Scholar 

  • Petschick R, Kuhn G, Gingele F (1996) Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Marine Geol 130:203–229

    Article  Google Scholar 

  • Pevear DR (1992) Illite age analysis, a new tool for basin thermal history analysis, In: Kharaka YK, Maest AS (eds), In: Proceedings of the 7th international symposium on water- rock interaction, pp 1251–1254

  • Rahl JM, Haines SH, van der Pluijm BA (2011) Links between orogenic wedge deformation and erosional exhumation: evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates ion the Spanish Pyrenees. Earth Planet Sci Lett 307:180–190

    Article  Google Scholar 

  • Ramírez-Sánchez E, Deckhart K, Hervé F (2008) Significance of 40Ar-39Ar encapsulation ages of metapelites from late Paleozoic metamorphic complexes of Aysén, Chile. Geol Mag 145:389–396

    Article  Google Scholar 

  • Reiners PW (2005) Zircon (U-Th)/He Thermochronometry: Rev Mineral Geochem 58:151–179

    Article  Google Scholar 

  • Reiners PW, Brady R, Farley KA, Fryxell JE, Wernicke B, Lux D (2000) Helium and argon thermochronometry of the Gold Butte block, south Virgin Mountains, Nevada. Earth Planet Sci Lett 178:315–326

    Article  Google Scholar 

  • Reuter A (1987) Implications of K–Ar ages of whole-rock and grain-size fractions of metapelites and intercalated metatuffs within an anchizonal terrane. Contribut Mineral Petrol 97:105–115

    Article  Google Scholar 

  • Samson SD, Alexander EC (1987) Calibration of the interlaboratory 40Ar-39Ar dating standard, MMhb-1. Chem Geol 66:27–34. doi:10.1016/0168-9622(87)90025-X

    Google Scholar 

  • Sherlock SC, Kelley SP, Zalasiewicz JA, Schrofield DI, Evans JA, Merriman RJ, Kemp SJ (2003) Precise dating of low-temperature deformation: strain-fringe analysis by 40Ar-39Ar laser microprobe. Geology 31:219–222

    Article  Google Scholar 

  • Snow JK (1992) Large-magnitude Permian shortening and continental-margin tectonics in the southern Cordillera. Geol Soc Am Bull 104:80–105

    Article  Google Scholar 

  • Środoń J (1999) Extracting K–Ar ages from shales: a theoretical test. Clay Mineral 34:375–378

    Article  Google Scholar 

  • Stevens CH, Stone P (2005a) Interpretation of the Last Chance thrust, Death Valley region, California, as an Early Permian décollement in a previously undeformed shale basin. Earth Sci Rev 73:79–101

    Article  Google Scholar 

  • Stevens CH, Stone P (2005b) Structure and regional significance of the Late Permian(?) Sierra Nevada-Death Valley thrust system, east-central California. Earth Sci Rev 73:103–113

    Article  Google Scholar 

  • Stewart JH, Gehrels GE, Barth AP, Link PK, Christie-Blick N, Wrucke CT (2001) Detrital zircon provenance of Mesoproterozoic to Cambrian arenites in the western United States and northwestern Mexico. Geol Soc Am Bull 113:1343–1356

    Article  Google Scholar 

  • Stockli DF, Farley KA, Dumitru TA (2000) Calibration of the apatite (U-Th)/He thermochronometer on an exhumed fault block, White Mountains, California. Geology 28:983–986

    Article  Google Scholar 

  • Stone P, Stevens CH (1988) Pennsylvanian and Early Permian paleogeography of east- central California: implications for the shape of the continental margin and the timing of continental truncation. Geology 16:330–333

    Article  Google Scholar 

  • Tagami T, Dumitru TA (1996) Provenance and thermal history of the Franciscan accretionary complex: Constraints from zircon fission track thermochronology. J Geophys Res 101:11353–11364

    Article  Google Scholar 

  • Turner G, Cadogan P (1974) Possible effects of 39Ar recoil in 40Ar-39Ar dating: In: Proceedings of the 5th annual lunar and planetary science conference, pp 1601–1615

  • van der Pluijm BA, Lee JH, Peacor DR (1988) Analytical electron microscopy and the problem of potassium diffusion. Clays Clay Mineral 36:498–504

    Article  Google Scholar 

  • van der Pluijm BA, Hall CM, Vrolijk P, Pevear DR, Covey M (2001) The dating of shallow faults in the Earth’s crust. Nature 412:172–174

    Article  Google Scholar 

  • Velde B, Renac C (1996) Smectite to illite conversion and K–Ar ages. Clay Mineral 31:25–32

    Article  Google Scholar 

  • Verdel C, Niemi N, van der Pluijm BA (2011a) Thermochronology of the Salt Spring fault. Constraints on the evolution of the South Virgin-White Hills detachment system, Nevada and Arizona, USA: Geosphere 7:774–784

    Google Scholar 

  • Verdel C, Niemi N, van der Pluijm BA (2011b) Variations in the illite-muscovite transition related to metamorphic conditions and detrital muscovite content: insight from the Paleozoic passive margin of the S.W. US. J Geol 119:419–437

    Article  Google Scholar 

  • Warr LN, Nieto F (1998) Crystallite thickness and defect density of phyllosilicates in low- temperature metamorphic pelites: a TEM and XRD study of clay-mineral crystallinity-index standards. Candian Mineral 36:1453–1474

    Google Scholar 

  • Warr LN, Rice AHN (1994) Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. J Metamorph Geol 12:141–152

    Article  Google Scholar 

  • Wasserburg GJ, Lanphere MA (1965) Age determinations in the Precambrian of Arizona and Nevada. Geol Soc Am Bull 76:735–758

    Article  Google Scholar 

  • Weaver CE (1989) Clays, muds, and shales, Developments in Sedimentology 44. Elsevier, New York, p 819

    Google Scholar 

  • Wells ML, Hoisch TD (2008) The role of mantle delamination in widespread Late Cretaceous extension and magmatism in the Cordilleran orogen, western United States. Geol Soc Am Bull 120:515–530

    Article  Google Scholar 

  • Wells ML, Spell TL, Hoisch TD, Arriola T, Zanetti KA (2008) Laser-probe 40Ar/39Ar dating of strain fringes: mid-Cretaceous synconvergent orogen-parallel extension in the interior of the Sevier orogen: Tectonics, vol 27, TC3012, doi:10.1029/2007TC002153

  • Wernicke B, Axen GJ, Snow JK (1988) Basin and Range extensional tectonics at the latitude of Las Vegas. Geol Soc Am Bull 100:1738–1757

    Article  Google Scholar 

  • Wilkinson M, Haszeldine RS (2002) Problems with argon: K–Ar ages in Gulf Coast shales. Chem Geol 191:277–283

    Article  Google Scholar 

  • Wolfe MR, Stockli DF (2010) Zircon (U–Th)/He thermochronometry in the KTB drill hole, Germany, and its implications for bulk He diffusion kinetics in zircon. Earth Planet Sci Lett 295:69–82

    Article  Google Scholar 

  • Wright LA, Troxel BW, Burchfiel BC, Chapman R, Labotka T (1981) Geologic cross section from the Sierra Nevada to the Las Vegas Valley, eastern California to southern Nevada: Geological Society of America Map and Chart Series MC-28M

  • Wyld SJ, Rogers JW, Copeland P (2003) Metamorphic evolution of the Luning-Fencemaker fold-thrust belt, Nevada: Illite crystallinity, metamorphic petrology, and 40Ar/39Ar geochronology. J Geol 111:17–38

    Article  Google Scholar 

  • Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. Pergamon Press, New York

    Google Scholar 

  • Zwingmann H, Han R, Ree J-H (2011) Cretaceous reactivation of the Deokpori Thrust, Taebaeksan Basin, South Korea, constrained by K–Ar dating of clayey fault gouge. Tectonics TC5015. doi:10.1029/2010TC002829

Download references

Acknowledgments

We thank Chris Hall at the UM Argon Geochronology Laboratory for conducting the 40Ar/39Ar step-heating experiments. XRD analysis was conducted in the UM Electron Microbeam Analysis Laboratory. The paper benefited from discussions with Daniel Stockli and comments from Michael Cosca and an anonymous reviewer. This research was supported by NSF grant EAR 0738435 and post-doctoral funds from the University of Michigan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Verdel.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verdel, C., van der Pluijm, B.A. & Niemi, N. Variation of illite/muscovite 40Ar/39Ar age spectra during progressive low-grade metamorphism: an example from the US Cordillera. Contrib Mineral Petrol 164, 521–536 (2012). https://doi.org/10.1007/s00410-012-0751-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0751-7

Keywords

Navigation