Skip to main content
Log in

Hydrodynamic trail following in a California sea lion (Zalophus californianus)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The mystacial vibrissae of pinnipeds constitute a sensory system for active touch and detection of hydrodynamic events. Harbour seals (Phoca vitulina) and California sea lions (Zalophus californianus) can both detect hydrodynamic stimuli caused by a small sphere vibrating in the water (hydrodynamic dipole stimuli). Hydrodynamic trail following has only been shown in harbour seals. Hydrodynamical and biomechanical studies of single vibrissae of the two species showed that the specialized undulated structure of harbour seal vibrissae, as opposed to the smooth structure of sea lion vibrissae, suppresses self-generated noise in the actively moving animal. Here we tested whether also sea lions were able to perform hydrodynamic trail following in spite of their non-specialized hair structure. Hydrodynamic trails were generated by a remote-controlled miniature submarine. Linear trails could be followed with high accuracy, comparable to the performance of harbour seals, but in contrast, increasing delay resulted in a reduced performance as compared to harbour seals. The results of this study are consistent with the hypothesis that structural differences in the vibrissal hair types of otariid compared to phocid pinnipeds lead to different sensitivity of the vibrissae during forward swimming, but still reveal a good performance even in the species with non-specialized hair type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. Fischer-Verlag. Stuttgart, New York

    Google Scholar 

  • Bleckmann H, Breithaupt T, Blickhan R, Tautz J (1991) The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. J Comp Physiol A 168:749–757

    CAS  PubMed  Google Scholar 

  • Crocker DE, Gales NJ, Costa DP (2001) Swimming speed and foraging strategies of New Zealand sea lions (Phocarctos hookeri). J Zool 254:267–277

    Article  Google Scholar 

  • Dehnhardt G (1994) Tactile size discrimination by a California sea lion (Zalophus californianus) using its mystacial vibrissae. J Comp Physiol A 175:791–800

    Article  CAS  PubMed  Google Scholar 

  • Dehnhardt G, Kaminski A (1995) Sensitivity of the mystacial vibrissae of harbour seals (Phoca vitulina) for size differences of actively touched objects. J Exp Biol 198:2317–2323

    CAS  PubMed  Google Scholar 

  • Dehnhardt G, Mauck B (2008) Mechanoreception in secondarily aquatic vertebrates. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold–adaptations in secondarily aquatic vertebrates. University of California Press, Berkely, pp 295–314

    Google Scholar 

  • Dehnhardt G, Sinder M, Sachser N (1997) Tactual discrimination of size by means of mystacial vibrissae in harbour seals: in air versus underwater. Z Säugetierkd Intern J Mamm Biol 62:40–43

    Google Scholar 

  • Dehnhardt G, Mauck B, Bleckmann H (1998) Seal whiskers detect water movements. Nature 394:235–236

    Article  CAS  Google Scholar 

  • Dehnhardt G, Hyvärinen H, Palviainen A, Klauer G (1999) Structure and innervation of the vibrissal follicle–sinus complex in the Australian water rat, Hydromys chrysogaster. J Comp Neurol 411:550–562

    Article  CAS  PubMed  Google Scholar 

  • Dehnhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail following in harbor seals (Phoca vitulina). Science 293:102–104

    Article  CAS  PubMed  Google Scholar 

  • Enger PS, Kalmijn AJ, Sand O (1989) Behavioral investigations on the functions of the lateral line and inner ear in predation. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line–neurobiology and evolution. Springer, New York, pp 575–587

    Google Scholar 

  • Feldkamp SD (1987) Swimming in the California sea lion–morphometrics, drag and energetics. J Exp Biol 131:117–135

    CAS  PubMed  Google Scholar 

  • Ferner MC, Weissburg MJ (2005) Slow-moving predatory gastropods track prey odors in fast and turbulent flow. J Exp Biol 208:809–819

    Article  PubMed  Google Scholar 

  • Fish FE, Innes S, Ronald K (1988) Kinematics and estimated thrust production of swimming harp and ringed seals. J Exp Biol 137:157–173

    CAS  PubMed  Google Scholar 

  • Fish FE, Howle LE, Murray MM (2008) Hydrodynamic flow control in marine mammals. Integr Comp Biol 48:788–800

    Article  Google Scholar 

  • Gellermann LW (1933) Chance orders of alternating stimuli in visual discrimination experiments. J Genet Psychol 42:206–208

    Google Scholar 

  • Ginter CC, Fish FE, Marschall CD (2010) Morphological analysis of the bumpy profile of phocid vibrissae. Mar Mamm Sci 26(3):733–743

    Google Scholar 

  • Hanke W, Bleckmann H (2004) The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) measured with scanning particle image velocimetry. J Exp Biol 207:1585–1596

    Article  PubMed  Google Scholar 

  • Hanke W, Brücker C, Bleckmann H (2000) The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203:1193–1200

    CAS  PubMed  Google Scholar 

  • Hanke W, Witte M, Miersch L, Brede M, Oeffner J, Michael M, Hanke F, Leder A, Dehnhardt G (2010) Harbor seal vibrissa morphology suppresses vortex-induced vibrations. J Exp Biol 213:2665–2672

    Article  PubMed  Google Scholar 

  • Hart DP (2000) PIV error correction. Exp Fluids 29:13–22

    Article  Google Scholar 

  • Hyvärinen H (1989) Diving in darkness: whiskers are sense organs of the ringed seal (Phoca hispida saimensis). J Zool 218:663–678

    Article  Google Scholar 

  • Hyvärinen H, Katajisto H (1984) Functional structure of the vibrissae of the ringed seal (Phoca hispida Schr.). Acta Zool Fennica 171:27–30

    Google Scholar 

  • Kalmijn AJ (1989) Functional evolution of lateral line and inner ear sensory systems. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line–neurobiology and evolution. Springer, New York, pp 187–215

    Google Scholar 

  • Kastelein RA, van Gaalen MA (1988) The sensitivity of the vibrissae of a Pacific walrus (Odobenus rosmarus divergens). Aquat Mamm 14:123–133

    Google Scholar 

  • Mauck B, Eysel U, Dehnhardt G (2000) Selective heating of vibrissal follicles in seals (Phoca vitulina) and dolphins (Sotalia fluviatilis guianensis). J Exp Biol 203:2125–2131

    CAS  PubMed  Google Scholar 

  • Pohlmann K, Grasso FW, Breithaupt T (2001) Tracking wakes: the nocturnal predatory strategy of piscivorous catfish. Proc Natl Acad Sci 98:7371–7374

    Article  CAS  PubMed  Google Scholar 

  • Rice FL, Mance A, Munger BL (1986) A comparative light microscopical analysis of the sensory innervation of the mysticial pad. 1. Innervation of vibrissal follicle-sinus complexes. J Comp Neurol 252:154–174

    Article  CAS  PubMed  Google Scholar 

  • Schulte-Pelkum N, Wieskotten S, Hanke W, Dehnhardt G, Mauck B (2007) Tracking of biogenic hydrodynamic trails in harbour seals (Phoca vitulina). J Exp Biol 210:781–787

    Article  CAS  PubMed  Google Scholar 

  • Stelle LL, Blake RW, Trites AW (2000) Hydrodynamic drag in Steller sea lions (Eumetopias jubatus). J Exp Biol 203:1915–1923

    CAS  PubMed  Google Scholar 

  • Stephens RJ, Beebe IJ, Poulter TC (1973) Innervation of vibrissae of California sea lion, Zalophus californianus. Anat Rec 176:421–441

    Article  CAS  PubMed  Google Scholar 

  • Vester HI, Folkow LP, Blix AS (2004) Click sounds produced by cod (Gadus morhua). J Acoust Soc Am 115:914–919

    Article  PubMed  Google Scholar 

  • Watkins WA, Wartzok D (1985) Sensory biophysics of marine mammals. Mar Mamm Sci 1:219–260

    Article  Google Scholar 

  • Weissburg MJ (2000) The fluid dynamical context of chemosensory behavior. Biol Bull 198:188–202

    Article  CAS  PubMed  Google Scholar 

  • Westerweel J (1997) Fundamentals of digital particle image velocimetry. Meas Sci Technol 8:1379–1392

    Article  CAS  Google Scholar 

  • Wieskotten S, Dehnhardt G, Mauck B, Miersch L, Hanke W (2010a) Hydrodynamic determination of the moving direction of an artificial fin by a harbour seal (Phoca vitulina). J Exp Biol 213:2194–2200

    Google Scholar 

  • Wieskotten S, Dehnhardt G, Mauck B, Miersch L, Hanke W (2010b) The impact of glide phases on the trackability of hydrodynamic trails in harbour seals (Phoca vitulina). J Exp Biol 213:3734–3740

    Google Scholar 

  • Willert CE, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10:181–193

    Article  Google Scholar 

  • Williams TM, Kooyman GL (1985) Swimming performance and hydrodynamic characteristics of harbor seals (Phoca vitulina). Physiol Zool 58:576–589

    Google Scholar 

  • Wilson B, Batty RS, Dill LM (2004) Pacific and Atlantic herring produce burst pulse sounds. Proc R Soc Lond B 271:S95–S97

    Article  Google Scholar 

Download references

Acknowledgments

We thank the directors and staff of Zoo Duisburg for their great cooperation. This study was supported by grants of the Volkswagenstiftung to GD, and the German Research Foundation (DFG) to GD and WH (SPP 1207). The experiments were carried out under the guidelines established by the European Communities Council Directive of 24 November 1986 (86/609/EEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf Hanke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gläser, N., Wieskotten, S., Otter, C. et al. Hydrodynamic trail following in a California sea lion (Zalophus californianus). J Comp Physiol A 197, 141–151 (2011). https://doi.org/10.1007/s00359-010-0594-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0594-5

Keywords

Navigation