Skip to main content
Log in

Effect of Alcohol on Bacterial Hemolysis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Hemolysis of blood agar is broadly used as a diagnostic tool for identifying and studying pathogenic microorganisms. We have recently shown that alcohol vapors can confer hemolytic properties on otherwise nonhemolytic fungi (microbial alcohol-conferred hemolysis; MACH). Until now, this phenomenon has been found in various yeast strains and other fungi, but only in a few bacterial species (e.g., staphylococci). In the current study we (1) determined the extent of the above phenomenon in various Gram-positive and Gram-negative laboratory bacterial strains and in clinical bacterial isolates, (2) validated the observed hemolysis using a quantitative technique, and (3) provided evidence that the observed alcohol-mediated hemolysis may, at least in part, be related to synthesis of hemolytic lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agapejev S, Vassilieff I, Curi PR (1992) Alcohol levels in cerebrospinal fluid and blood samples from patients under pathological conditions. Acta Neurol Scand 86:496–500

    PubMed  CAS  Google Scholar 

  2. Aranda A, del Olmo M (2003) Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway. Yeast 20:747–759

    Article  PubMed  CAS  Google Scholar 

  3. Beaven MJ, Charpentier C, Rose AH (1982) Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition in Saccharomyces cerevisiae NCYC. J Gen Microbiol 128:1447–1455

    CAS  Google Scholar 

  4. Chi Z, Arneborg N (1999) Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae. J Appl Microbiol 86:1047–1052

    Article  PubMed  CAS  Google Scholar 

  5. Conlon KM, Humphreys H, O’Gara JP (2002) icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J Bacteriol 184:4400–4408

    Article  PubMed  CAS  Google Scholar 

  6. Feron VJ, Til HP, De Vrijer F, Woutersen RA, Cassee FR, Van Bladeien PJ (1991) Aldehydes: occurrence, carcinogenic potential, and mechanism of action and risk assessment. Mutat Res 259:363–385

    Article  PubMed  CAS  Google Scholar 

  7. Fujita Y, Matsuoka H, Hirooka K (2007) Regulation of fatty acid metabolism in bacteria. Mol Microbiol 66:829–839

    Article  PubMed  CAS  Google Scholar 

  8. Gerstel U, Romling U (2001) Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella typhimurium. Environ Microbiol 3:638–648

    Article  PubMed  CAS  Google Scholar 

  9. Gibson RL, Nizet V, Rubens CE (1999) Group B streptococcal b-hemolysin promotes injury of lung microvascular endothelial cells. Pediatr Res 45:626–634

    Article  PubMed  CAS  Google Scholar 

  10. Homann N, Jousimies-Somer H, Jokelainen K, Heine R, Salaspuro M (1997) High acetaldehyde levels in saliva after ethanol consumption: methodological aspects and pathogenic implications. Carcinogenesis 18:1739–1743

    Article  PubMed  CAS  Google Scholar 

  11. Homann N, Tillonen J, Meurman JH, Rintamäki H, Lindqvist C, Rautio M, Jousimies S, Salaspuro M (2000) Increased salivary acetaldehyde levels in heavy drinkers and smokers: a microbiological approach to oral cavity cancer. Carcinogenesis 21:663–668

    Article  PubMed  CAS  Google Scholar 

  12. Ingram LO (1976) Adaptation of membrane lipids to alcohols. J Biol Chem 125:670–678

    CAS  Google Scholar 

  13. Jeannotte ME, Abul-Milh M, Dubreuil JD, Jacques M (2003) Binding of Actinobacillus pleuropneumoniae to phosphatidylethanolamine. Infect Immun 71:4657–4663

    Article  PubMed  CAS  Google Scholar 

  14. Jiasong Fang J, Barcelona MJ (1998) Structural determination and quantitative analysis of bacterial phospholipids using liquid chromatography/electrospray ionization/mass spectrometry. J Microbiol Methods 33:23–35

    Article  Google Scholar 

  15. Korem M, Gov Y, Shirron N, Shuster A, Rosenberg M (2007) Alcohol increases hemolysis by staphylococci. FEMS Microlett 269:153–159

    Article  CAS  Google Scholar 

  16. Lorenz MC, Cutler NS, Heitman J (2000) Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol Biol Cell 11:183–199

    PubMed  CAS  Google Scholar 

  17. Muto M, Hitomi Y, Ohtsu A, Shimada H, Kashiwase Y, Sasaki H, Yoshida S, Esumi H (2000) Acetaldehyde production by non-pathogenic Neisseria in human oral microflora: implications for carcinogenesis in upper aeordigestive tract. Int J Cancer 88:342–350

    Article  PubMed  CAS  Google Scholar 

  18. Nelson S, Kolls JK (2002) Alcohols, host defence and society. Nat Rev Immunol 2:205–209

    Article  PubMed  CAS  Google Scholar 

  19. O’Reilly MJ, Azavedo CS, Kennedy S, Foster JT (1986) Inactivation of the alpha hemolysin gene of Staphylococcus aureus 8325–4 by site directed mutagenesis and studies on the expression of its haemolysin. Microb Pathog 1:125–138

    Article  PubMed  CAS  Google Scholar 

  20. Rozyalski A, Koteko K (1987) Hemolytic activity and invasiveness in strains of Proteus penneri. J Clin Microbiol 25:1094–1096

    Google Scholar 

  21. Salaspuro MP (2003) Alcohol consumption and cancer of the gastrointestinal tract. Best Pract Res Clin Gastroenterol 17:679–694

    Article  PubMed  CAS  Google Scholar 

  22. Schmiel SD, Miller MV (1999) Bacterial phospholipases and pathogenesis. Microbes Infect 1:1103–1112

    Article  PubMed  CAS  Google Scholar 

  23. Shuster A, Osherov N, Leikin-Frenkel A, Rosenberg M (2007) Alcohol-conferred hemolysis in yeast is a consequence of increased respiratory burden. FEMS Yeast Res 7:879–886

    Article  PubMed  CAS  Google Scholar 

  24. Shuster A, Osherov N, Rosenberg M (2004) Alcohol-mediated hemolysis in yeast. Yeast 21:1335–1342

    Article  PubMed  CAS  Google Scholar 

  25. Smith MG, Des Etages SG, Snyder M (2004) Microbial synergy via an ethanol-triggered pathway. Mol Biol Cell 24:3874–3884

    Article  CAS  Google Scholar 

  26. Suzuki A, Kawakami M (1983) A hemolytic lipoprotein containing lysophosphatidylcholine produced in incubated mouse plasma. Biochim Biophys Acta 753:236–243

    PubMed  CAS  Google Scholar 

  27. Titball RW (1975) Bacterial phospholipases. Symp Ser Soc Appl Microbiol 27:127–137

    Google Scholar 

  28. Van Der Vijer JCM, Van Es-Boom MM, Michel MF (1975) A study of the virulence factors with induced mutants of Staphylococcal aureus. J Med Microbiol 8:279–287

    Article  Google Scholar 

  29. Welch RA, Dellinger EP, Minshew B, Falkow S (1981) Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature 294:665–667

    Article  PubMed  CAS  Google Scholar 

  30. Zara S, Farris GA, Budroni M, Bakalinsky AT (2002) HSP12 is essential for biofilm formation by Sardinian wine strain of S. cerevisiae. Yeast 19:269–276

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mel Rosenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirron, N., Korem, M., Shuster, A. et al. Effect of Alcohol on Bacterial Hemolysis. Curr Microbiol 57, 318–325 (2008). https://doi.org/10.1007/s00284-008-9196-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9196-7

Keywords

Navigation