Skip to main content
Log in

The promises and challenges of fusion constructs in protein biochemistry and enzymology

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fusion constructs are used to improve the properties of or impart novel functionality to proteins for biotechnological applications. The biochemical characteristics of enzymes or functional proteins optimized by fusion include catalytic efficiency, stability, activity, expression, secretion, and solubility. In this review, we summarize the parameters of enzymes or functional proteins that can be modified by fusion constructs. For each parameter, fusion strategies and molecular partners are examined using examples from recent studies. Future prospects in this field are also discussed. This review is expected to increase interest in and advance fusion strategies for optimization of enzymes and other functional proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alfasi S, Sevastsyanovich Y, Zaffaroni L, Griffiths L, Hall R, Cole J (2011) Use of GFP fusions for the isolation of Escherichia coli strains for improved production of different target recombinant proteins. J Biotechnol 156:11–21

    Article  CAS  PubMed  Google Scholar 

  • Amaro F, Turkewitz AP, Martín-González A, Gutiérrez JC (2014) Functional GFP-metallothionein fusion protein from Tetrahymena thermophila: a potential whole-cell biosensor for monitoring heavymetal pollution and a cellmodel to studymetallothionein overproduction effects. Biomet 27:195–205

    Article  CAS  Google Scholar 

  • Berger S, Lowe P, Tesar M (2015) Fusion protein technologies for biopharmaceuticals: applications and challenges. mAbs 7:456–460

    Article  CAS  PubMed Central  Google Scholar 

  • Blatchford PA, Scott C, French N, Rehm BHA (2012) Immobilization of organophosphohydrolase OpdA from Agrobacterium radiobacter by overproduction at the surface of polyester inclusions inside engineered Escherichia coli. Biotechnol Bioeng 109:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Xiang X, Yang R, Hu X, Cao C, Malik FA, Wu X (2013c) Immobilization of foreign protein in BmNPV polyhedra by fusion expression with partial polyhedrin fragments. J Virol Methods 194:185–189

    Article  CAS  PubMed  Google Scholar 

  • Chen XY, Zaro JL, Shen W-C (2013a) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65:1357–1369

    Article  CAS  PubMed  Google Scholar 

  • Chen KK, Liu S, Wang G, Zhang DX, Du GC, Chen J, Shi ZP (2013b) Enhancement of Streptomyces transglutaminase activity and pro-peptide cleavage efficiency by introducing linker peptide in the C-terminus of the pro-peptide. J Ind Microbiol Biotechnol 40:317–325

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Markillie LM, Xiong Y, Mayer MU, Squier TC (2007) Increased catalytic efficiency following gene fusion of bifunctional methionine sulfoxide reductase enzymes from Shewanella oneidensis. Biochem 46:14153–14161

    Article  CAS  Google Scholar 

  • Costa S, Almeida A, Castro A, Domingues L (2014) Fusion tags for protein solubility, purification, and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol 5

  • de Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukau B (2007) Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol 7:32

  • Deane JE, Mackay JP, Kwan AHY, Sum EYM, Visvader JE, Matthews JM (2003) Structural basis for the recognition of ldb1 by the N-terminal LIM domains of LMO2 and LMO4. EMBO J 22:2224–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deane JE, Ryan DP, Sunde M, Maher MJ, Guss JM, Visvader JE, Matthews JM (2004) Tandem LIM domains provide synergistic binding in the LMO4: Ldb1 complex. EMBO J 23:3589–3598

  • Esposito D, Chatterjee DK (2006) Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotechnol 17:353–358

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Tong Y, Li W, Gao X, Yao W (2013) Improving the anti-diabetic activity of GLP-1 by fusion with globular adiponectin. Artif Cells Nanomed Biotechnol 41:159–164

    Article  CAS  PubMed  Google Scholar 

  • Goomber S, Kumar A, Singh R, Kaur J (2016) Point mutation ile137-Met near surface conferred psychrophilic behaviour and improved catalytic efficiency to bacillus lipase of 1.4 subfamily. Appl Biochem Biotechnol 178:753–765

    Article  CAS  PubMed  Google Scholar 

  • Gromek KA, Meddaugh HR, Wrobel RL, Suchy FP, Bingman CA, Primm JG, Fox BG (2013) Improved expression and purification of sigma 1 receptor fused to maltose binding protein by alteration of linker sequence. Protein Expr Purif 89:203–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grubb JH, Vogler C, Tan Y, Shah GN, MacRae AF, Sly WS (2008) Infused Fc-tagged beta-glucuronidase crosses the placenta and produces clearance of storage in utero in mucopolysaccharidosis VII mice. PNAS USA 105:8375–8380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han RZ, Li JH, Shin H-D, Chen RR, Du GC, Liu L, Chen J (2013) Carbohydrate-binding module-cyclodextrin glycosyltransferase fusion enables efficient synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid with soluble starch as the glycosyl donor. Appl Environ Microbiol 79:3234–3240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han RZ, Li JH, Shin H-D, Chen RR, Du GC, Liu L, Chen J (2014) Fusion of self-assembling amphipathic oligopeptides with cyclodextrin glycosyltransferase improves 2-O-D-glucopyranosyl-L-ascorbic acid synthesis with soluble starch as the glycosyl donor. Appl Environ Microbiol 80:4717–4724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooks DO, Blatchford PA, Rehm BHA (2013) Bioengineering of bacterial polymer inclusions catalyzing the synthesis of N-acetylneuraminic acid. Appl Environ Microbiol 79:3116–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooks DO, Venning-Slater M, Du J, Rehm BHA (2014) Polyhydroyxalkanoate synthase fusions as a strategy for oriented enzyme immobilisation. Mol 19:8629–8643

    Article  Google Scholar 

  • Ijiri H, Coulibaly F, Nishimura G, Nakai D, Chiu E, Takenaka C, Ikeda K, Nakazawa H, Hamada N, Kotani E, Metcalf P, Kawamata S, Mori H (2009) Structure-based targeting of bioactive proteins into cypovirus polyhedra and application to immobilized cytokines for mammalian cell culture. Biomater 30:4297–4308

    Article  CAS  Google Scholar 

  • Ikeda K, Nakazawa H, Shimo-Oka A, Ishio K, Miyata S, Hosokawa Y, Matsumura S, Masuhara H, Belloncik S, Alain R, Goshima N, Nomura N, Morigaki K, Kawai A, Kuroita T, Kawakami B, Endo Y, Mori H (2006) Immobilization of diverse foreign proteins in viral polyhedra and potential application for protein microarrays. Proteomics 6:54–66

    Article  CAS  PubMed  Google Scholar 

  • Jana S, Deb J (2005) Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 67:289–298

    Article  CAS  PubMed  Google Scholar 

  • Juge N, Nøhrb J, Gal-Coëffeta M-FL, Kramhøftc B, Furnissa CSM, Planchotd V, Archera DB, Williamsona G, Svenssonc B (2006) The activity of barley α-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase. Biochim Biophys Acta-Proteins Proteomics 1764:275–284

    Article  CAS  Google Scholar 

  • Kang Y-S, Song J-A, Han K-Y, Lee J (2015) Escherichia coli EDA is a novel fusion expression partner to improve solubility of aggregation-prone heterologous proteins. J Biotechnol 194:39–47

    Article  CAS  PubMed  Google Scholar 

  • Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, Garber M, Maehr R (2015) Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods 12:401–40+

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kittur FS, Mangala SL, Rus’d AA, Kitaoka M, Tsujibo H, Hayashi K (2003) Fusion of family 2b carbohydrate-binding module increases the catalytic activity of a xylanase from Thermotoga maritima to soluble xylan. FEBS Lett 549:147–151

    Article  CAS  PubMed  Google Scholar 

  • Kobe B, Ve T, Williams SJ (2015) Fusion-protein-assisted protein crystallization. Acta Crystallogr Sect F-Struct Biol Commun 71:861–869

    Article  CAS  Google Scholar 

  • Korepanova A, Moore JD, Nguyen HB, Hua Y, Cross TA, Gao F (2007) Expression of membrane proteins from Mycobacterium tuberculosis in Escherichia coli as fusions with maltose binding protein. Protein Expr Purif 53:24–30

    Article  CAS  PubMed  Google Scholar 

  • Kyratsous CA, Panagiotidis CA (2012) Heat-shock protein fusion vectors for improved expression of soluble recombinant proteins in Escherichia coli. Methods Mol Biol 824:109–129

    Article  CAS  PubMed  Google Scholar 

  • Lee H-L, Chang C-K, Teng K-H, Liang P-H (2011) Construction and characterization of different fusion proteins between cellulases and beta-glucosidase to improve glucose production and thermostability. Bioresour Technol 102:3973–3976

    Article  CAS  PubMed  Google Scholar 

  • Li C-Y, Cao C-Z, Xu W-X, Cao M-M, Yang F, Dong L, Yu M, Zhan Y-Q, Gao Y-B, Li W (2010) Recombinant human hepassocin stimulates proliferation of hepatocytes in vivo and improves survival in rats with fulminant hepatic failure. Gut 59:817–826

    Article  CAS  PubMed  Google Scholar 

  • Ling ZM, Liu Y, Teng S, Kang Z, Zhang J, Chen J, Du GC (2013) Rational design of a novel propeptide for improving active production of Streptomyces griseus trypsin in Pichia pastoris. Appl Environ Microbiol 79:3851–3855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, Ijzerman AP, Cherezov V, Stevens RC (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Sci 337:232–236

    Article  CAS  Google Scholar 

  • Lu XY, Liu S, Zhang DX, Zhou X, Wang M, Liu Y, Wu J, Du GC, Chen J (2013) Enhanced thermal stability and specific activity of Pseudomonas aeruginosa lipoxygenase by fusing with self-assembling amphipathic peptides. Appl Microbiol Biotechnol 97:9419–9427

    Article  CAS  PubMed  Google Scholar 

  • Madhuprakash J, EI Gueddari NE, Moerschbacher BM, Podie AR (2015) Catalytic efficiency of chitinase-D on insoluble chitinous substrates was improved by fusing auxiliary domains. PLoS One 10:e0116823

    Article  PubMed  PubMed Central  Google Scholar 

  • Mai-Gisondi G, Turunen O, Pastinen O, Pahimanolis N, Master ER (2015) Enhancement of acetyl xylan esterase activity on cellulose acetate through fusion to a family 3 cellulose binding module. Enzym Microb Technol 79-80:27–33

    Article  CAS  Google Scholar 

  • Mamo G, Hatti-Kaul R, Mattiasson B (2007) Fusion of carbohydrate binding modules from Thermotoga neapolitana with a family 10 xylanase from Bacillus halodurans S7. Extremophiles 11:169–177

    Article  CAS  PubMed  Google Scholar 

  • Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo X, Butt TR (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15:182–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin M, Wayllace NZ, Valdez HA, Gomez-Casati DF, Busi MV (2013) Improving the glycosyltransferase activity of Agrobacterium tumefaciens glycogen synthase by fusion of N-terminal starch binding domains (SBDs). Biochim 95:1865–1870

    Article  CAS  Google Scholar 

  • Mori H, Shukunami C, Furuyama A, Notsu H, Nishizaki Y, Hiraki Y (2007) Immobilization of bioactive fibroblast growth factor-2 into cubic proteinous microcrystals (Bombyx mori cypovirus polyhedra) that are insoluble in a physiological cellular environment. J Biol Chem 282:17289–17296

    Article  CAS  PubMed  Google Scholar 

  • Neeraja C, Moerschbacher B, Podile AR (2010) Fusion of cellulose binding domain to the catalytic domain improves the activity and conformational stability of chitinase in Bacillus licheniformis DSM13. Bioresour Technol 101:3635–3641

    Article  CAS  PubMed  Google Scholar 

  • Oliveira C, Carvalho V, Domingues L, Gama FM (2015) Recombinant CBM-fusion technology-applications overview. Biotechnol Adv 33:358–369

    Article  CAS  PubMed  Google Scholar 

  • Parashar D, Satyanarayana T (2016) A chimeric α-amylase engineered from Bacillus acidicola and Geobacillus thermoleovorans with improved thermostability and catalytic efficiency. J Ind Microbiol Biotechnol 43:473–484

    Article  CAS  PubMed  Google Scholar 

  • Park EY, Abe T, Kato T (2008) Improved expression of fusion protein using a cysteine-protease- and chitinase-deficient Bombyx mori (silkworm) multiple nucleopolyhedrovirus bacmid in silkworm larvae. Biotechnol Appl Biochem 49:135–140

    Article  CAS  PubMed  Google Scholar 

  • Pedelacq JD, Piltch E, Liong EC, Berendzen J, Kim CY, Rho BS, Park MS, Terwilliger TC, Waldo GS (2002) Engineering soluble proteins for structural genomics. Nat Biotechnol 20:927–932

    Article  CAS  PubMed  Google Scholar 

  • Ramos R, NE Pinto R, Mota M, Sampaio L, Gama FM (2007) Textile depilling: superior finishing using cellulose-binding domains with residual enzymatic activity. Biocatal Biotransform 25:35–42

  • Rasiah IA, Rehm BHA (2009) One-step production of immobilized alpha-amylase in recombinant Escherichia coli. Appl Environ Microbiol 75:2012–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy Chichili VP, Kumar V, Sivaraman J (2013) Linkers in the structural biology of protein-protein interactions. Protein Sci Pub Protein Soc 22:153–167

    Article  CAS  Google Scholar 

  • Robins KJ, Hooks DO, Rehm BHA, Ackerley DF (2013) Escherichia coli NemA Is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium PLoS ONE:8

  • Scholz KE, Kopka B, Wirtz A, Pohl M, Jaeger K-E, Krauss U (2013) Fusion of a flavin-based fluorescent protein to hydroxynitrile lyase from Arabidopsis thaliana improves enzyme stability. Appl Environ Microbiol 79:4727–4733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Zheng F, Pan R, Wang J, Ding S (2014) Engineering and comparative characteristics of double carbohydrate binding modules as a strenght additive for papermaking applications. Bioresour 9:3117–3131

    Google Scholar 

  • Singh Y, Gupta N, Verma VV, Goel M, Gupta R (2016) Selective disruption of disulphide bonds lowered activation energy and improved catalytic efficiency in TALipB from Trichosporon asahii MSR54: MD simulations revealed flexible lid and extended substrate binding area in the mutant. Biochem Biophys Res Commun 472:223–230

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Yadav D, Rai KM, Srivastava M, Verma PC, Singh PK, Tuli R (2012) Enhanced expression of rabies virus surface G-protein in Escherichia coli using SUMO fusion. Protein J 31:68–74

    Article  CAS  PubMed  Google Scholar 

  • Sobrado P, Goren MA, James D, Amundson CK, Fox BG (2008) A protein structure initiative approach to expression, purification, and in situ delivery of human cytochrome b5 to membrane vesicles. Protein Expr Purif 58:229–241

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Xia Z, Bi F, Liu J-N (2008) Expression and purification of human urodilatin by small ubiquitin-related modifier fusion in Escherichia coli. Appl Microbiol Biotechnol 78:495–502

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Hiraki M, Yamada Y, Matsugaki N, Igarashi N, Kato R, Dikic I, Drew D, Iwata S, Wakatsuki S, Kawasaki M (2010) Crystallization of small proteins assisted by green fluorescent protein. Acta Crystallogr Sect D-Biol Crystallogr 66:1059–1066

    Article  CAS  Google Scholar 

  • Tang C-D, Li J-F, Wei X-H, Min R, Gao S-J, Wang J-Q, Yin X, Wu M-C (2013) Fusing a carbohydrate-binding module into the Aspergillus usamii beta-mannanase to improve its thermostability and cellulose-binding capacity by in silico design. PLoS One 8

  • Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533

    Article  CAS  PubMed  Google Scholar 

  • Thorsen TS, Matt R, Weis WI, Kobilka BK (2014) Modified T4 lysozyme fusion proteins facilitate G protein-coupled receptor crystallogenesis. Struct 22:1657–1664

    Article  CAS  Google Scholar 

  • Wang Q, Zhao J, Wang Y, Sun H, Jiang Y, Luo L, Yin Z (2013) Functional expression of hepassocin in Escherichia coli using SUMO fusion partner and molecular chaperones. Protein Expr Purif 92:135–140

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Xing L, Zhou B, Lin Z (2011) Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli. Microb Cell Fact 10

  • Yamamura Y, Hirakawa H, Yamaguchi S, Nagamune T (2011) Enhancement of sortase A-mediated protein ligation by inducing a β-hairpin structure around the ligation site. Chem Commun 47:4742–4744

    Article  CAS  Google Scholar 

  • Yang HQ, Li JH, Shin H-d, Du GC, Liu L, Chen J (2014) Molecular engineering of industrial enzymes: recent advances and future prospects. Appl Microbiol Biotechnol 98:23–29

    Article  CAS  PubMed  Google Scholar 

  • Yang HQ, Lu XY, Liu L, Li JH, H-d S, Chen RR, Du GC, Chen J (2013) Fusion of an oligopeptide to the N terminus of an alkaline alpha-amylase from Alkalimonas amylolytica simultaneously improves the enzyme's catalytic efficiency, thermal stability, and resistance to oxidation. Appl Environ Microbiol 79:3049–3058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Xing L, Wu W, Zhang X-E, Lin Z (2012) Small surfactant-like peptides can drive soluble proteins into active aggregates. Microb Cell Factories 11

  • Zou Z, Cao L, Zhou P, Su Y, Sun Y, Li W (2008) Hyper-acidic protein fusion partners improve solubility and assist correct folding of recombinant proteins expressed in Escherichia coli. J Biotechnol 135:333–339

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the National Natural Science Foundation of China (grant number 21406089), Natural Science Foundation of Jiangsu Province (grant number BK20140152, BK20151126), 863 Program (grant number 2014AA021304), the 111 Project (grant number 111-2-06), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Jiangsu province “Collaborative Innovation Center for Advanced Industrial Fermentation” industry development program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiquan Yang or Fei Xu.

Ethics declarations

Ethical approval

This paper is in compliance with ethical standards.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Liu, L. & Xu, F. The promises and challenges of fusion constructs in protein biochemistry and enzymology. Appl Microbiol Biotechnol 100, 8273–8281 (2016). https://doi.org/10.1007/s00253-016-7795-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7795-y

Keywords

Navigation