Skip to main content

Advertisement

Log in

Abnormal Purkinje cell activity in vivo in experimental allergic encephalomyelitis

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Cerebellar deficits in multiple sclerosis (MS) tend to persist and can produce significant disability. Although the pathophysiological basis for these deficits is not clear, it was recently reported that the expression of the sensory neuron-specific sodium channel Nav1.8 (which is not normally expressed within the cerebellum) is aberrantly upregulated within Purkinje cells in experimental allergic encephalomyelitis (EAE) and in human MS. The expression of Nav1.8 in cultured Purkinje cells has been shown to alter the activity pattern of these cells in vitro by decreasing the number of spikes per conglomerate action potential and by contributing to the production of sustained, pacemaker-like activity upon depolarization, suggesting the hypothesis that, in pathophysiological situations where Nav1.8 is upregulated within Purkinje cells, the pattern of activity in these cells will be altered. In the present study, we examined this hypothesis in vivo in mice with EAE. Our results demonstrate a reduction in the number of secondary spikes per complex spike and irregularity in the temporal organization of secondary spikes in Purkinje cells from mice with EAE in which Nav1.8 is upregulated. We also observed abnormal bursting activity in Purkinje cells from mice with EAE, which was not observed in control animals. These results demonstrate functional changes in Purkinje cells in vivo within their native cerebellar environment in EAE, a model of MS, and support the hypothesis that misexpression of Nav1.8 can contribute to cerebellar deficits in neuroinflammatory disorders by altering the pattern of electrical activity within the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D
Fig. 2A, B
Fig. 3A–C
Fig. 4A–D
Fig. 5A, B
Fig. 6

Similar content being viewed by others

References

  • Akopian AN, Sivilotti L, Wood JN (1996) A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379:257–262

    CAS  PubMed  Google Scholar 

  • Amor S, Groome N, Linington C, Morris MM, Dornmair K, Gardinier MV, Matthieu JM, Baker D (1994) Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J Immunol 153:4349–4356

    CAS  PubMed  Google Scholar 

  • Armstrong DM, Rawson JA (1979) Activity patterns of cerebellar cortical neurones and climbing fibre afferents in the awake cat. J Physiol 289:425–448

    CAS  PubMed  Google Scholar 

  • Black JA, Fjell J, Dib-Hajj S, Duncan ID, O’Connor LT, Fried K, Gladwell Z, Tate S, Waxman SG (1999) Abnormal expression of SNS/PN3 sodium channel in cerebellar Purkinje cells following loss of myelin in the taiep rat. Neuroreport 10:913–918

    CAS  PubMed  Google Scholar 

  • Black JA, Dib-Hajj S, Baker D, Newcombe J, Cuzner ML, Waxman SG (2000) Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis. Proc Natl Acad Sci U S A 97:11598–11602

    Article  CAS  PubMed  Google Scholar 

  • Craner MJ, Lo AC, Black JA, Baker D, Newcombe J, Cuzner ML, Waxman SG (2003a) Annexin II/p11 is up-regulated in Purkinje cells in EAE and MS. Neuroreport 14:555–558

    Article  PubMed  Google Scholar 

  • Craner MJ, Lo AC, Black JA, Waxman SG (2003b) Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination. Brain 126:1552–1561

    Article  PubMed  Google Scholar 

  • Craner MJ, Lo AC, Kataoka Y, Lo AC, Black JA, Baker D, Waxman SG (2003c) Temporal course of upregulation of Nav1.8 in Purkinje neurons parallels the progression of clinical deficit in EAE. J Neuropathol Exp Neurol 62:968–975

    PubMed  Google Scholar 

  • Davie CA, Barker GJ, Webb S, Tofts PS, Thompson AJ, Harding AE, McDonald WI, Miller DH (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 118:1583–1592

    PubMed  Google Scholar 

  • De Zeeuw C, Simpson J, Hoogenraad C, Galjart N, Koekkoek S, Ruigrok T (1998) Microcircuitry and function of the inferior olive. Trends Neurosci 29:391–400

    Google Scholar 

  • Dib-Hajj SD, Ishikawa K, Cummins TR, Waxman SG (1997) Insertion of a SNS-specific tetrapeptide in S3-S4 linker of D4 accelerates recovery from inactivation skeletal muscle voltage-gated Na channel mu1 in HEK293 cells. FEBS Lett 416:11–14

    Article  CAS  PubMed  Google Scholar 

  • Eccles JC, Llinas R, Sasaki K (1966a) Parallel fibre stimulation and the responses induced thereby in the Purkinje cells of the cerebellum. Exp Brain Res 1:17–39

    CAS  PubMed  Google Scholar 

  • Eccles JC, Llinas R, Sasaki K (1966b) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol 182:268–296

    CAS  PubMed  Google Scholar 

  • Eccles JC, Llinas R, Sasaki K (1966c) Intracellularly recorded responses of the cerebellar Purkinje cells. Exp Brain Res 1:161–183

    CAS  PubMed  Google Scholar 

  • Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, New York

  • Elliott AA, Elliott JR (1993) Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia. J Physiol 463:39–56

    CAS  PubMed  Google Scholar 

  • Felts PA, Yokoyama S, Dib-Hajj S, Black JA, Waxman SG (1997) Sodium channel alpha-subunit mRNAs I, II, III, NaG, Na6 and hNE (PN1): different expression patterns in developing rat nervous system. Mol Brain Res 45:71–82

    Article  CAS  PubMed  Google Scholar 

  • Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399

    Article  PubMed  Google Scholar 

  • Goldowitz D, Hamre K (1998) The cells and molecules that make a cerebellum. Trends Neurosci 21:375–382

    CAS  Google Scholar 

  • Granit R, Phillips CG (1956) Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. J Physiol 133:520–547

    CAS  PubMed  Google Scholar 

  • Greenlee JE, Burns JB, Rose JW, Jaeckle KA, Clawson S (1995) Uptake of systemically administered human anticerebellar antibody by rat Purkinje cells following blood-brain barrier disruption. Acta Neuropathol (Berl) 89:341–345

    Google Scholar 

  • Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    CAS  PubMed  Google Scholar 

  • Ito M, Simson JI (1971) Discharges in Purkinje cell axons during climbing fiber activation. Brain Res 31:215–219

    Article  CAS  PubMed  Google Scholar 

  • Kohrman DC, Smith MR, Goldin AL, Harris J, Meisler MH (1996) A missense mutation in the sodium channel Scn8a is responsible for cerebellar ataxia in the mouse mutant jolting. J Neurosci 16:5993–9599

    CAS  PubMed  Google Scholar 

  • Llinas R, Sugimori M (1980a) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol 305:171–195

    CAS  PubMed  Google Scholar 

  • Llinas R, Sugimori M (1980b) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol 305:197–213

    CAS  PubMed  Google Scholar 

  • Matthews WB, Compston A, Allen IV, Martyn CN (1991) McAlpine’s multiple sclerosis, 2nd edn. Churchill Livingstone, Edinburgh

  • Nataf S, Naveilhan P, Sindji L, Darcy F, Brachet P, Montero-Menei CN (1998) Low affinity NGF receptor expression in the central nervous system during experimental allergic encephalomyelitis. J Neurosci Res 52:83–92

    Article  CAS  PubMed  Google Scholar 

  • Okuse K, Malik-Hall M, Baker MD, Poon WY, Kong H, Chao MV, Wood JN (2002) Annexin II light chain regulates sensory neuron-specific sodium channel expression. Nature 417:653–656

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse atlas in stereotaxic coordinates, 2nd edn. Academic Press, San Diego

  • Raman IM, Sprunger LK, Meisler MH, Bean BP (1997) Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron 19:881–891

    CAS  PubMed  Google Scholar 

  • Renganathan M, Cummins TR, Waxman SG (2001) Contribution of Nav1.8 sodium channels to action potential electrogenesis in DRG. J Neurophysiol 86:629–640

    CAS  PubMed  Google Scholar 

  • Renganathan M, Gelderblom M, Black JA, Waxman SG (2003) Expression of Nav1.8 sodium channels perturbs the firing patterns of cerebellar Purkinje cells. Brain Res 959:235–242

    Article  CAS  PubMed  Google Scholar 

  • Saab CY, Willis WD (2001) Nociceptive visceral stimulation modulates the activity of cerebellar Purkinje cells. Exp Brain Res 140:122–126

    CAS  PubMed  Google Scholar 

  • Saab CY, Willis WD (2003) The cerebellum: organization, functions and its role in nociception. Brain Res Rev 42:85–95

    Article  PubMed  Google Scholar 

  • Saab CY, Kawasaki M, Al-Chaer ED, Willis WD (2001) Cerebellar cortical stimulation increases spinal visceral nociceptive responses. J Neurophysiol 85:2359–2363

    CAS  PubMed  Google Scholar 

  • Sangameswaran L, Delgado SG, Fish LM, Koch BD, Jakeman LB, Stewart GR, Sze P, Hunter JC, Eglen RM, Herman RC (1996) Structure and function of a novel voltage-gated, tetrodotoxin-resistant sodium channel specific to sensory neurons. J Biol Chem 271:5953–5956

    Article  CAS  PubMed  Google Scholar 

  • Schild JH, Kunze DL (1997) Experimental and modeling study of Na+ current heterogeneity in rat nodose neurons and its impact on neuronal discharge. J Neurophysiol 78:3198–3209

    CAS  PubMed  Google Scholar 

  • Schmolesky MT, Weber JT, De Zeeuw CI, Hansel C (2002) The making of a complex spike: ionic composition and plasticity. Ann N Y Acad Sci 978:359–390

    PubMed  Google Scholar 

  • Smith MR, Goldin AL (1999) A mutation that causes ataxia shifts the voltage-dependence of the Scn8a sodium channel. Neuroreport 10:3027–3031

    CAS  PubMed  Google Scholar 

  • Thach WT Jr (1967) Somatosensory receptive fields of single units in cat cerebellar cortex. J Neurophysiol 30:675–696

    PubMed  Google Scholar 

  • Thach WT (1968) Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol 31:785–797

    CAS  PubMed  Google Scholar 

  • Thach WT (1970) Discharge of cerebellar neurons related to two maintained postures and two prompt movements. II. Purkinje cell output and input. J Neurophysiol 33:537–547

    CAS  PubMed  Google Scholar 

  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    Article  CAS  PubMed  Google Scholar 

  • van Kan PL, Gibson AR, Houk JC (1993) Movement-related inputs to intermediate cerebellum of the monkey. J Neurophysiol 69:74–94

    PubMed  Google Scholar 

  • Vega-Saenz de Miera EC, Rudy B, Sugimori M, Llinas R (1997) Molecular characterization of the sodium channel subunits expressed in mammalian cerebellar Purkinje cells. Proc Natl Acad Sci U S A 94:7059–7064

    Google Scholar 

  • Waxman SG (1998) Demyelinating diseases—new pathological insights, new therapeutic targets. N Engl J Med 338:323–325

    Article  CAS  PubMed  Google Scholar 

  • Weinshenker BG, Rice GP, Noseworthy JH, Carriere W, Baskerville J, Ebers GC (1991) The natural history of multiple sclerosis: a geographically based study. 4. Applications to planning and interpretation of clinical therapeutic trials. Brain 114:1057–1067

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Albert Lo for his advice on the EAE model. The study was supported in part by grants from the National Multiple Sclerosis Society and the Medical Research Service and Rehabilitation Research Service, Department of Veterans Affairs. We also thank the Paralyzed Veterans of America, the Eastern Paralyzed Veterans Association, the Nancy Davis Foundation, and Destination Cure for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Waxman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saab, C.Y., Craner, M.J., Kataoka, Y. et al. Abnormal Purkinje cell activity in vivo in experimental allergic encephalomyelitis. Exp Brain Res 158, 1–8 (2004). https://doi.org/10.1007/s00221-004-1867-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-1867-4

Keywords

Navigation