Skip to main content
Log in

Continuity of the Phase Transition for Planar Random-Cluster and Potts Models with \({1 \le q \le 4}\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This article studies the planar Potts model and its random-cluster representation. We show that the phase transition of the nearest-neighbor ferromagnetic q-state Potts model on \({\mathbb{Z}^2}\) is continuous for \({q \in \{2,3,4\}}\), in the sense that there exists a unique Gibbs state, or equivalently that there is no ordering for the critical Gibbs states with monochromatic boundary conditions.

The proof uses the random-cluster model with cluster-weight \({q \ge 1}\) (note that q is not necessarily an integer) and is based on two ingredients:

  • The fact that the two-point function for the free state decays sub-exponentially fast for cluster-weights \({1\le q\le 4}\), which is derived studying parafermionic observables on a discrete Riemann surface.

  • A new result proving the equivalence of several properties of critical random-cluster models:

    • the absence of infinite-cluster for wired boundary conditions,

    • the uniqueness of infinite-volume measures,

    • the sub-exponential decay of the two-point function for free boundary conditions,

    • a Russo–Seymour–Welsh type result on crossing probabilities in rectangles with arbitrary boundary conditions.

The result has important consequences toward the study of the scaling limit of the random-cluster model with \({q \in [1,4]}\). It shows that the family of interfaces (for instance for Dobrushin boundary conditions) are tight when taking the scaling limit and that any sub-sequential limit can be parametrized by a Loewner chain. We also study the effect of boundary conditions on these sub-sequential limits. Let us mention that the result should be instrumental in the study of critical exponents as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman M., Burchard A.: Hölder regularity and dimension bounds for random curves. Duke Math. J. 99(3), 419–453 (1999)

    Article  MATH  Google Scholar 

  2. Aizenman M., Duminil-Copin H., Sidoravicius V.: Random currents and continuity of Ising model’s spontaneous magnetization. Commun. Math. Phys. 334, 719–742 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Aizenman M., Fernández R.: On the critical behavior of the magnetization in high-dimensional Ising models. J. Stat. Phys. 44(3–4), 393–454 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Alexander Kenneth S.: On weak mixing in lattice models. Probab. Theory Relat. Fields 110(4), 441–471 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baxter R.J.: Generalized ferroelectric model on a square lattice. Stud. Appl. Math. 50, 51–69 (1971)

    Article  MathSciNet  Google Scholar 

  6. Baxter R.J.: Potts model at the critical temperature. J. Phys. C: Solid State Phys. 6(23), L445 (1973)

    Article  ADS  Google Scholar 

  7. Baxter, R.J.: Exactly solved models in statistical mechanics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London (1989) (Reprint of the 1982 original)

  8. Beffara, V., Duminil-Copin, H.: Critical point in planar lattice models. In: Sidoravicius, V., Smirnov, S. (eds) Probability and Statistical Physics in St. Petersburg, Proceedings of Symposia in Pure Mathematics, vol. 91. AMS (2016)

  9. Beffara V., Duminil-Copin H.: Smirnov’s fermionic observable away from criticality. Ann. Probab. 40(6), 2667–2689 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Beffara, V., Duminil-Copin, H., Smirnov, S.: On the critical parameters of the \({q\geq}\) 4 random cluster model on isoradial graphs. J. Phys. A Math Theoretical 48(48), 484003 (2015). DOI:10.1088/1751-8113/48/48/484003

  11. Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241(2), 333–380 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry of critical fluctuations in two dimensions. J. Stat. Phys. 34(5–6), 763–774 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Benoist, S., Duminil-Copin, H., Hongler, C.: Conformal Invariance of Crossing Probabilities for the Ising Model with Free Boundary Conditions. arXiv:1410.3715 (2014)

  14. Biskup M., Chayes L., Crawford N.: Mean-field driven first-order phase transitions in systems with long-range interactions. J. Stat. Phys. 122(6), 1139–1193 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Camia F., Newman C.M.: Critical percolation exploration path and SLE6: a proof of convergence. Probab. Theory Relat. Fields 139(3–4), 473–519 (2007)

    Article  MATH  Google Scholar 

  16. Chelkak, D., Duminil-Copin, H., Hongler, C.: Crossing probabilities in topological rectangles for the critical planar FK-Ising model. Electron. J. Probab. 21(5), 1–28 (2016)

  17. Chelkak D., Duminil-Copin H., Hongler C., Kemppainen A., Smirnov S.: Convergence of Ising interfaces to Schramm’s SLE curves. C. R. Acad. Sci. Paris Math. 352(2), 157–161 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chelkak, D., Hongler, C., Izyurov, K.: Conformal invariance of spin correlations in the planar Ising model. Ann. Math. (2). 181(3), 1087–1138 (2015)

  19. Chelkak D., Izyurov K.: Holomorphic spinor observables in the critical Ising model. Commun. Math. Phys. 322(2), 303–332 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Chelkak D., Smirnov S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189(3), 515–580 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Duminil-Copin H.: Divergence of the correlation length for critical planar FK percolation with \({1\le q\le 4}\) via parafermionic observables. J. Phys. A: Math. Theor. 45(49), 494013 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Duminil-Copin, H.: Parafermionic Observables and Their Applications to Planar Statistical Physics Models, Ensaios Matemáticos [Mathematical Surveys], vol. 25, Sociedade Brasileira de Matemática, Rio de Janeiro, p. ii+371 (2013)

  23. Duminil-Copin, H.: Geometric Representations of Lattice Spin Models. Book, Edition Spartacus (2015)

  24. Duminil-Copin H., Garban C., Pete G.: The near-critical planar FK-Ising model. Commun. Math. Phys. 326(1), 1–35 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Duminil-Copin H., Hongler C., Nolin P.: Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model. Commun. Pure Appl. Math. 64(9), 1165–1198 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Duminil-Copin, H., Li, J.-H., Manolescu, I.: Universality for Random-Cluster Models on Isoradial Graphs. Preprint (2015)

  27. Duminil-Copin, H., Manolescu, I.: The phase transitions of the planar random-cluster and Potts models with q > 1 are sharp. Probab. Theory Relat. Fields 164(3), 865–892 (2016)

  28. Duminil-Copin, H., Smirnov, S.: The connective constant of the honeycomb lattice equals \({\sqrt{2+\sqrt{2}}}\). Ann. Math. (2). 175(3), 1653–1665 (2012)

  29. Duminil-Copin H., Tassion V.: A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. Commun. Math. Phys. 343(2), 725–745 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Duminil-Copin, H., Tassion, V.: A new proof of the sharpness of the phase transition for Bernoulli percolation on \({\mathbb{Z}^d}\). arXiv:1502.03051 (2015)

  31. Fortuin C.M., Kasteleyn P.W.: On the random-cluster model. I. Introduction and relation to other models. Physica 57, 536–564 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  32. Fradkin E., Kadanoff Leo P.: Disorder variables and para-fermions in two-dimensional statistical mechanics. Nucl. Phys. B 170(1), 1–15 (1980)

    Article  ADS  Google Scholar 

  33. Gobron T., Merola I.: First-order phase transition in Potts models with finite-range interactions. J. Stat. Phys. 126(3), 507–583 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Geoffrey, G.: The random-cluster model, vol 333., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2006)

  35. Grimmett Geoffrey R., Manolescu I.: Bond percolation on isoradial graphs: criticality and universality. Probab. Theory Relat. Fields 159(1–2), 273–327 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  36. Hongler, C.: Conformal invariance of Ising model correlations. In: XVIIth International Congress on Mathematical Physics, pp. 326–335. World Sci. Publ., Hackensack, NJ (2014)

  37. Hongler C., Kytölä K.: Ising interfaces and free boundary conditions. J. Am. Math. Soc. 26(4), 1107–1189 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  38. Hongler C., Smirnov S.: Critical percolation: the expected number of clusters in a rectangle. Probab. Theory Relat. Fields 151(3–4), 735–756 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  39. Kemppainen, A., Smirnov, S.: Random curves, scaling limits and loewner evolutions. arXiv:1212.6215 (2012)

  40. Kenyon R.: Conformal invariance of domino tiling. Ann. Probab. 28(2), 759–795 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  41. Kenyon R.: Dominos and the Gaussian free field. Ann. Probab. 29(3), 1128–1137 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  42. Kesten H.: The critical probability of bond percolation on the square lattice equals \({{1\over 2}}\). Commun. Math. Phys. 74(1), 41–59 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Kotecký R., Shlosman S.B.: First-order phase transitions in large entropy lattice models. Commun. Math. Phys. 83(4), 493–515 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  44. Laanait L., Messager A., Ruiz J.: Phases coexistence and surface tensions for the Potts model. Commun. Math. Phys. 105(4), 527–545 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  45. Laanait L., Messager A., Miracle-Solé S., Ruiz J., Shlosman S.: Interfaces in the Potts model. I. Pirogov–Sinai theory of the Fortuin–Kasteleyn representation. Commun. Math. Phys. 140(1), 81–91 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Lawler, G.F.: Conformally Invariant Processes in the Plane, vol. 114. Mathematical Surveys and MonographsAmerican Mathematical Society, Providence, RI (2005)

  47. Lawler Gregory F., Schramm O., Werner W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B), 939–995 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  48. Lubetzky E., Sly A.: Critical Ising on the square lattice mixes in polynomial time. Commun. Math. Phys. 313(3), 815–836 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Onsager L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 2(65), 117–149 (1944)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. Potts, R.B.: Some generalized order-disorder transformations. In: Proceedings of the Cambridge Philosophical Society, vol. 48, pp. 106–109. Cambridge Univ Press, Cambridge (1952)

  51. Riva, V., Cardy, J.: Holomorphic parafermions in the Potts model and stochastic Loewner evolution. J. Stat. Mech. Theory Exp. (12):P12001, p. 19 (electronic) (2006)

  52. Russo L.: A note on percolation. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 43(1), 39–48 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  53. Schramm, O.: Conformally invariant scaling limits: an overview and a collection of problems. In: International Congress of Mathematicians. Vol. I, pp. 513–543. Eur. Math. Soc., Zürich (2007)

  54. Seymour, P.D., Welsh, D.J.A.: Percolation probabilities on the square lattice. Ann. Discr. Math. 3, 227–245 (1978). Advances in graph theory (Cambridge Combinatorial Conf., Trinity College, Cambridge, 1977)

  55. Simon B.: Correlation inequalities and the decay of correlations in ferromagnets. Commun. Math. Phys. 77(2), 111–126 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  56. Smirnov, S.: Towards conformal invariance of 2D lattice models. In: International Congress of Mathematicians. Vol. II, pp. 1421–1451. Eur. Math. Soc., Zürich (2006)

  57. Smirnov, S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. (2). 172(2), 1435–1467 (2010)

  58. Tassion, V.: Crossing probabilities for Voronoi percolation. Ann. Probab. 44(5), 3385–3398 (2016)

  59. Werner, W.: Percolation et modèle d’Ising, volume 16 of Cours Spécialisés [Specialized Courses]. Société Mathématique de France, Paris (2009)

  60. Wu F.Y.: The Potts model. Rev. Mod. Phys. 54(1), 235–268 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  61. Yang C.N.: The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. 2(85), 808–816 (1952)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Duminil-Copin.

Additional information

Communicated by F. Toninelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duminil-Copin, H., Sidoravicius, V. & Tassion, V. Continuity of the Phase Transition for Planar Random-Cluster and Potts Models with \({1 \le q \le 4}\) . Commun. Math. Phys. 349, 47–107 (2017). https://doi.org/10.1007/s00220-016-2759-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2759-8

Navigation