Skip to main content
Log in

On the Relationship Between Continuous- and Discrete-Time Quantum Walk

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Quantum walk is one of the main tools for quantum algorithms. Defined by analogy to classical random walk, a quantum walk is a time-homogeneous quantum process on a graph. Both random and quantum walks can be defined either in continuous or discrete time. But whereas a continuous-time random walk can be obtained as the limit of a sequence of discrete-time random walks, the two types of quantum walk appear fundamentally different, owing to the need for extra degrees of freedom in the discrete-time case.

In this article, I describe a precise correspondence between continuous- and discrete- time quantum walks on arbitrary graphs. Using this correspondence, I show that continuous-time quantum walk can be obtained as an appropriate limit of discrete-time quantum walks. The correspondence also leads to a new technique for simulating Hamiltonian dynamics, giving efficient simulations even in cases where the Hamiltonian is not sparse. The complexity of the simulation is linear in the total evolution time, an improvement over simulations based on high-order approximations of the Lie product formula. As applications, I describe a continuous-time quantum walk algorithm for element distinctness and show how to optimally simulate continuous-time query algorithms of a certain form in the conventional quantum query model. Finally, I discuss limitations of the method for simulating Hamiltonians with negative matrix elements, and present two problems that motivate attempting to circumvent these limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element distinctness problems. J. ACM 51 (4) 595–605 (2004), preliminary versions in STOC 2002 and FOCS 2002

    Google Scholar 

  2. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proc. 33rd ACM Symposium on Theory of Computing, pp. 50–59, 2001, available at http://arxiv.org/abs/quant-ph/0012090, 2000

  3. Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation and statistical zero knowledge. In: Proc. 35th ACM Symposium on Theory of Computing, pp. 20–29, 2003, available at http://arxiv.org/abs/quant-ph/0301023, 2003

  4. Aldous, D., Fill, J.A.: Reversible Markov chains and random walks on graphs (in preparation), http://www.stat.berkeley.edu/~aldous/RWG/book.html

  5. Ambainis A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. Proc. 33rd ACM Symposium on Theory of Computing, pp. 37–49, 2001, available at http://arxiv.org/abs/quant-ph/0010117, 2000

  7. Ambainis, A., Childs, A.M., Reichardt, B.W., Špalek, R., Zhang S.: Any AND-OR formula of size N can be evaluated in time N 1/2+o(1) on a quantum computer. In: Proc. 48th IEEE Symposium on Foundations of Computer Science, pp. 363–372, 2007, available at http://arxiv.org/abs/quant-ph/0703015 and http://arxiv.org/abs/0704.3628, 2007

  8. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proc. 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 1099–1108, 2005, available at http://arxiv.org/abs/quant-ph/0402107, 2004

  9. Berry D.W., Ahokas G., Cleve R., Sanders B.C.: Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys. 270(2), 359–371 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Buhrman, H., Špalek, R.: Quantum verification of matrix products. In: Proc. 17th ACM-SIAM Symposium on Discrete Algorithms, pp. 880–889, 2006, available at http://arxiv.org/abs/quant-ph/0409035, 2004

  11. Bužek V., Derka R., Massar S.: Optimal quantum clocks. Phys. Rev. Lett. 82(10), 2207–2210 (1999)

    Article  ADS  Google Scholar 

  12. Childs, A.M.: Quantum information processing in continuous time. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, 2004

  13. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by quantum walk. In: Proc. 35th ACM Symposium on Theory of Computing, pp. 59–68, 2003, available at http://arxiv.org/abs/quant-ph/0209131, 2002

  14. Childs A.M., Eisenberg J.M.: Quantum algorithms for subset finding. Quant. Inf. Comp. 5(7), 593–604 (2005)

    MATH  Google Scholar 

  15. Childs A.M., Farhi E., Gutmann S.: An example of the difference between quantum and classical random walks. Quant. Inf. Proc. 1(1-2), 35–43 (2002)

    Article  MathSciNet  Google Scholar 

  16. Childs A.M., Goldstone J.: Spatial search by quantum walk. Phys. Rev. A 70(2), 022314 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  17. Childs A.M., Goldstone J.: Spatial search and the Dirac equation. Phys. Rev. A 70(4), 042312 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  18. Childs, A.M., Schulman, L.J., Vazirani, U.V.: Quantum algorithms for hidden nonlinear structures. In: Proc. 48th IEEE Symposium on Foundations of Computer Science, pp. 395–404, 2007, available at http://arxiv.org/abs/0705.2784, 2007

  19. Cleve, R., Gottesman, D., Mosca, M., Somma, R.D., Yonge-Mallo, D.L.: Efficient discrete-time simulations of continuous-time quantum query algorithms. In: Proc. 41st ACM Symposium on Theory of Computing, pp. 409–416, 2009, available at http://arxiv.org/abs/0811.4428, 2008

  20. van Dam W., D’Ariano G.M., Ekert A., Macchiavello C., Mosca M.: Optimal phase estimation in quantum networks. J. Phys. A 40(28), 7971–7984 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. van Dam, W., Hallgren, S., Ip, L.: Quantum algorithms for some hidden shift problems. In: Proc. 14th ACM-SIAM Symposium on Discrete Algorithms, pp. 489–498, 2002, available at http://arxiv.org/abs/quant-ph/0211140, 2002

  22. van Dam, W., Mosca, M., Vazirani, U.: How powerful is adiabatic quantum computation?. In: Proc. 42nd IEEE Symposium on Foundations of Computer Science, pp. 279–287, 2001, available at http://arxiv.org/abs/quant-ph/0206003, 2002

  23. van Dam, W., Seroussi, G.: Quantum algorithms for estimating Gauss sums and calculating discrete logarithms. Manuscript, 2003, available at http://www.cs.ucsb.edu/~vandam/gausssumdlog.pdf

  24. Damgård, I.B.: On the randomness of Legendre and Jacobi sequences. Advances in Cryptology - CRYPTO ’88, Lecture Notes in Computer Science, vol. 403, New York: Springer, 1990, pp. 163–172

  25. Farhi E., Goldstone J., Gutmann S.: A quantum algorithm for the Hamiltonian NAND tree. Theory of Computing 4(1), 169–190 (2008)

    Article  MathSciNet  Google Scholar 

  26. Farhi E., Gutmann S.: Analog analogue of a digital quantum computation. Phys. Rev. A 57(4), 2403–2406 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  27. Farhi E., Gutmann S.: Quantum computation and decision trees. Phys. Rev. A 58(2), 915–928 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  28. Godsil, C.: Association schemes. Lecture notes, available at http://quoll.uwaterloo.ca/pstuff/assoc.pdf, 2004

  29. Grover, L., Rudolph, T.: Creating superpositions that correspond to efficiently integrable probability distributions, available at http://arxiv.org/abs/quant-ph/0208112v1, 2002

  30. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997), preliminary version in STOC 1996

    Google Scholar 

  31. Kedlaya K.S.: Quantum computation of zeta functions of curves. Comput. Complex. 15(1), 1–19 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Linial N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lloyd S.: Universal quantum simulators. Science 273(5278), 1073–1078 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  34. Luis A., Peřina J.: Optimum phase-shift estimation and the quantum description of the phase difference. Phys. Rev. A 54(5), 4564–4570 (1996)

    Article  ADS  Google Scholar 

  35. Magniez, F., Nayak, A.: Quantum complexity of testing group commutativity. Algorithmica 48(3), 221–232 (2007), preliminary version in ICALP 2005

    Google Scholar 

  36. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In: Proc. 39th ACM Symposium on Theory of Computing, pp. 575–584, 2007, available at http://arvix.org/abs/quant-ph/0608026, 2006

  37. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. In: Proc. 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 1109–1117, 2005, available at http://arxiv.org/abs/quant-ph/0310134, 2003

  38. Meyer D.A.: From quantum cellular automata to quantum lattice gasses. J. Stat. Phys. 85(5/6), 551–574 (1996)

    Article  MATH  ADS  Google Scholar 

  39. Meyer D.A.: On the absence of homogeneous scalar unitary cellular automata. Phys. Lett. A 223, 337–340 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Mochon C.: Hamiltonian oracles. Phys. Rev. A 75(4), 042313 (2007)

    Article  ADS  Google Scholar 

  41. Moore, C., Russell, A.: Quantum walks on the hypercube. In: Proc. 6th International Workshop on Randomization and Approximation Techniques in Computer Science, Lecture Notes in Computer Science, Vol. 2483, Berlin: Springer, 2002 pp. 164–178

  42. Regev, O.: Witness-preserving amplification of QMA. Lecture notes, http://www.cs.tau.ac.il/~odedr/teaching/quantum_fall_2005/ln/qma.pdf, 2006

  43. Reichardt, B.W., Špalek, R.: Span-program-based quantum algorithm for evaluating formulas. In: Proc. 40th ACM Symposium on Theory of Computing, pp. 103–112, 2008, available at http://arxiv.org/abs/0710.2630, 2007

  44. Roland J., Cerf N.J.: Quantum search by local adiabatic evolution. Phys. Rev. A 65(4), 042308 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  45. Roland J., Cerf N.J.: Quantum-circuit model of Hamiltonian search algorithms. Phys. Rev. A 68(6), 062311 (2003)

    Article  ADS  Google Scholar 

  46. Schmidt W.M.: Equations over Finite Fields: An Elementary Approach. 2nd ed. Kendrick Press, Hebercity, UT (2004)

    MATH  Google Scholar 

  47. Severini S.: On the digraph of a unitary matrix. SIAM J. Matrix Anal. Appl. 25(1), 295–300 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  48. Shenvi N., Kempe J., Whaley K.B.: A quantum random walk search algorithm. Phys. Rev. A 67(5), 052307 (2003)

    Article  ADS  Google Scholar 

  49. Shor P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  50. Strauch F.W.: Connecting the discrete- and continuous-time quantum walks. Phys. Rev. A 74(3), 030301 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  51. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proc. 45th IEEE Symposium on Foundations of Computer Science, pp. 32–41, 2004, available at http://arxiv.org/abs/quant-ph/0401053, 2004

  52. Tulsi A.: Faster quantum-walk algorithm for the two-dimensional spatial search. Phys. Rev. A 78(1), 012310 (2008)

    Article  ADS  Google Scholar 

  53. Watrous J.: Quantum simulations of classical random walks and undirected graph connectivity. J. Comput. System Sci. 62(2), 376–391 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  54. Weil A.: On some exponential sums. Proc. Natl. Acad. Sci. 34(5), 204–207 (1948)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Childs.

Additional information

Communicated by M. B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Childs, A.M. On the Relationship Between Continuous- and Discrete-Time Quantum Walk. Commun. Math. Phys. 294, 581–603 (2010). https://doi.org/10.1007/s00220-009-0930-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0930-1

Keywords

Navigation