Skip to main content

Advertisement

Log in

Development of mRNA-based body fluid identification using reverse transcription loop-mediated isothermal amplification

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Identifying body fluids from forensic samples can provide valuable evidence for criminal investigations. Messenger RNA (mRNA)-based body fluid identification was recently developed, and highly sensitive parallel identification using reverse transcription polymerase chain reaction (RT-PCR) has been described. In this study, we developed reverse transcription loop-mediated isothermal amplification (RT-LAMP) as a simple, rapid assay for identifying three common forensic body fluids, namely blood, semen, and saliva, and evaluated its specificity and sensitivity. Hemoglobin beta (HBB), transglutaminase 4 (TGM4), and statherin (STATH) were selected as marker genes for blood, semen, and saliva, respectively. RT-LAMP could be performed in a single step including both reverse transcription and DNA amplification under an isothermal condition within 60 min, and detection could be conveniently performed via visual fluorescence. Marker-specific amplification was performed in each assay, and no cross-reaction was observed among five representative forensically relevant body fluids. The detection limits of the assays were 0.3 nL, 30 nL, and 0.3 μL for blood, semen, and saliva, respectively, and their sensitivities were comparable with those of RT-PCR. Furthermore, RT-LAMP assays were applicable to forensic casework samples. It is considered that RT-LAMP is useful for body fluid identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gaensslen RE. Sourcebook in forensic serology, immunology, and biochemistry. Washington DC: National Institute of Justice; 1983.

    Google Scholar 

  2. Kishi K, Takizawa H, Yamamoto S. Forensic serology: illustrated technical manual. Kanehara: Tokyo; 1990.

    Google Scholar 

  3. Virkler K, Lednev IK. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int. 2009;188:1–17.

    Article  CAS  PubMed  Google Scholar 

  4. Gefrides L, Welch K. Forensic biology: serology and DNA. In: Mozayani A, Noziglia C, editors. The forensic laboratory handbook procedure and practice. New York: Humana Press; 2011. p. 15–50.

    Chapter  Google Scholar 

  5. Li R. Forensic biology. 2nd ed. Boca Raton: CRC Press; 2015.

    Google Scholar 

  6. Juusola J, Ballantyne J. Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification. Forensic Sci Int. 2003;135:85–96.

    Article  CAS  PubMed  Google Scholar 

  7. Juusola J, Ballantyne J. Multiplex mRNA profiling for the identification of body fluids. Forensic Sci Int. 2005;152:1–12.

    Article  CAS  PubMed  Google Scholar 

  8. Nussbaumer C, Gharehbaghi-Schnell E, Korschineck I. Messenger RNA profiling: a novel method for body fluid identification by real-time PCR. Forensic Sci Int. 2006;157:181–6.

    Article  CAS  PubMed  Google Scholar 

  9. Juusola J, Ballantyne J. mRNA profiling for body fluid identification by multiplex quantitative RT-PCR. J Forensic Sci. 2007;52:1252–62.

    CAS  PubMed  Google Scholar 

  10. Sakurada K, Ikegaya H, Fukushima H, Akutsu T, Watanabe K, Yoshino M. Evaluation of mRNA-based approach for identification of saliva and semen. Legal Med (Tokyo). 2009;11:125–8.

    Article  CAS  Google Scholar 

  11. Sakurada K, Akutsu T, Watanabe K, Fujinami Y, Yoshino M. Expression of statherin mRNA and protein in nasal and vaginal secretions. Legal Med (Tokyo). 2011;13:309–13.

    Article  CAS  Google Scholar 

  12. Richard M, Harper K, Craig R, Onorato A, Robertson J, Donfack J. Evaluation of mRNA marker specificity for the identification of five human body fluids by capillary electrophoresis. Forensic Sci Int Genet. 2012;6:452–60.

    Article  CAS  PubMed  Google Scholar 

  13. Sakurada K, Akutsu T, Watanabe K, Miyasaka S, Kasai K. Identification of body fluid stains using real-time RT-PCR: discrimination between salivary, nasal, and vaginal secretions. Jpn J Forensic Sci Technol. 2013;18:1–11.

    Article  Google Scholar 

  14. Xu Y, Xie J, Cao Y, Zhou H, Ping Y, Chen L, et al. Development of highly sensitive and specific mRNA multiplex system (XCYR1) for forensic human body fluids and tissues identification. PLoS One. 2014;9:e100123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matsumura S, Matsusue A, Waters B, Kashiwagi M, Hara K, Kubo S. Application of mRNA expression analysis to human blood identification in degenerated samples that were false-negative by immunochromatography. J Forensic Sci. 2016;61:903–12.

    Article  CAS  PubMed  Google Scholar 

  16. Hanson E, Lubenow H, Ballantyne J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem. 2009;387:303–14.

    Article  CAS  PubMed  Google Scholar 

  17. Zubakov D, Boersma AWM, Choi Y, van Kuijk PF, Wiemer EAC, Kayser M. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med. 2010;124:217–26.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee HY, Park MJ, Choi A, An JH, Yang WI, Shin KJ. Potential forensic application of DNA methylation profiling to body fluid identification. Int J Legal Med. 2012;126:55–62.

    Article  PubMed  Google Scholar 

  19. Wasserstorm A, Frumkin D, Davidson A, Shpitzen M, Herman Y, Gafny R. Demonstration of DSI-semen-A novel DNA methylation-based forensic semen identification assay. Forensic Sci Int Genet. 2013;7:136–42.

    Article  CAS  Google Scholar 

  20. Matsubara Y, Ikeda H, Endo H, Narisawa K. Dried blood spot on filter paper as a source of mRNA. Nucleic Acids Res. 1992;20:1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karlsson H, Guthenberg C, von Dobeln U, Kristenssson K. Extraction of RNA from dried blood on filter papers after long-term storage. Clin Chem. 2003;49:979–81.

    Article  CAS  PubMed  Google Scholar 

  22. Zubakov D, Hanekamp E, Kokshoorn M, van IJcken W, Kayser M. Stable RNA markers for identification of blood and saliva stains revealed from whole genome expression analysis of time-wise degraded samples. Int J Legal Med. 2008;122:135–42.

    Article  PubMed  Google Scholar 

  23. Zubakov D, Kokshoorn M, Kloosterman A, Kayser M. New markers for old stains: stable mRNA markers for blood and saliva identification from up to 16-year-old stains. Int J Legal Med. 2009;123:71–4.

    Article  PubMed  Google Scholar 

  24. Alvarez M, Juusola J, Ballantyne J. An mRNA and DNA co-isolation method for forensic casework samples. Anal Biochem. 2004;335:289–98.

    Article  CAS  PubMed  Google Scholar 

  25. Watanabe K, Iwashima Y, Akutsu T, Sekiguchi K, Sakurada K. Evaluation of a co-extraction method for real-time PCR-based body fluid identification and DNA typing. Legal Med (Tokyo). 2014;16:56–9.

    Article  CAS  Google Scholar 

  26. Bowden A, Fleming R, Harbison S. A method for DNA and RNA co-extraction for use on forensic samples using the Promega DNA IQ™ system. Forensic Sci Int Genet. 2011;5:64–8.

    Article  CAS  PubMed  Google Scholar 

  27. Akutsu T, Kitayama T, Watanabe K, Sakurada K. Comparison of automated and manual purification of total RNA for mRNA-based identification of body fluids. Forensic Sci Int Genet. 2015;14:11–7.

    Article  CAS  PubMed  Google Scholar 

  28. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:e63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nagamine K, Watanabe K, Ohtsuka K, Hase T, Notomi T. Loop-mediated isothermal amplification reaction using a nondenatured template. Clin Chem. 2001;47:1742–3.

    CAS  PubMed  Google Scholar 

  30. Mori Y, Nagamine K, Tomita N, Notomi T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun. 2001;289:150–4.

    Article  CAS  PubMed  Google Scholar 

  31. Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes. 2002;16:223–9.

    Article  CAS  PubMed  Google Scholar 

  32. Mori Y, Kitao M, Tomita N, Notomi T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J Biochem Biophys Methods. 2004;59:145–57.

    Article  CAS  PubMed  Google Scholar 

  33. Tomita N, Mori Y, Kanda H, Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc. 2008;3:877–82.

    Article  CAS  PubMed  Google Scholar 

  34. Poon LLM, Leung CSW, Tashiro M, Chan KH, Wong BWY, Yuen KY, et al. Rapid detection of the severe acute respiratory syndrome (SARS) coronavirus by a loop-mediated isothermal amplification assay. Clin Chem. 2004;50:1050–2.

    Article  CAS  PubMed  Google Scholar 

  35. Hara-Kudo Y, Yoshino M, Kojima T, Ikedo M. Loop-mediated isothermal amplification for the rapid detection of Salmonella. FEMS Microbiol Lett. 2005;253:155–61.

    Article  CAS  PubMed  Google Scholar 

  36. Annaka T, Yoshino M, Momoda T, Nemoto J, Sunada A, Kojima T, et al. Simple detection of Legionella species by LAMP, a new DNA amplification method. J Jpn Soc Clin Microbiol. 2003;13:19–25.

    CAS  Google Scholar 

  37. Nakahara H, Mizuno N, Fujii K, Sekiguchi K. Human DNA specific detection from forensic biological samples. Rep Natl Res Inst Police Sci. 2007;58:66–74.

    Google Scholar 

  38. Tanaka J. ABO genotyping by loop-mediated isothermal amplification (LAMP). Jpn J Forensic Sci Technol. 2009;14:1–9.

    Article  Google Scholar 

  39. Nakanishi H, Ohmori T, Hara M, Takada A, Shojo H, Adachi N, et al. A simple identification method of saliva by detecting Streptococcus salivarius using loop-mediated isothermal amplification. J Forensic Sci. 2011;56(suppl s1):S158–61.

    Article  CAS  PubMed  Google Scholar 

  40. Su C, Li C, Lee JC, Ji D, Li S, Daniel B, et al. A novel application of real-time RT-LAMP for body fluid identification: using HBB detection as the model. Forensic Sci Med Pathol. 2015;11:208–15.

    Article  CAS  PubMed  Google Scholar 

  41. Kitamura M, Kubo S, Tanaka J, Adachi T. Rapid screening method for male DNA by using the loop-mediated isothermal amplification assay. Int J Legal Med. 2017; https://doi.org/10.1007/s00414-017-1661-z.

  42. Sun B, Shen F, McCalla SE, Kreutz JE, Karymov MA, Ismagilov RF. Mechanistic evaluation of the pros and cons of digital RT-LAMP for HIV-1 viral load quantification on a microfluidc device and improved efficiency via a two-step digital protocol. Anal Chem. 2013;85:1540–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Myers FB, Henrikson RH, Bone J, Lee LP. A handheld point-of-care genomic diagnostic system. PLoS One. 2013;8:e70266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Damhorst GL, Duarte-Guevara C, Chen W, Ghonge T, Cunningham BT, Bashir R. Smartphone-imaged HIV-1 reverse-transcription loop-mediated isothermal amplification (RT-LAMP) on a chip from whole blood. Engineering. 2015;1:324–35.

    Article  PubMed  Google Scholar 

  45. Durate C, Salm E, Dorvel B, Reddy B Jr, Bashir R. On-chip parallel detection of foodborne pathogens using loop-mediated isothermal amplification. Biomed Microdevices. 2013;15:821–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The real-time RT-LAMP measurements were performed at the Kumamoto Prefectural Institute of Public-Health and Environment Science.

Funding

This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers JP26933005 and JP15H00672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Satoh.

Ethics declarations

All participants in this study provided informed consent, and the study design was approved by the Human Genome/Gene Analysis Research Ethics Committee of the Japanese Association of Forensic Science and Technology. Written informed consent was obtained from each participant.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satoh, T., Kouroki, S., Ogawa, K. et al. Development of mRNA-based body fluid identification using reverse transcription loop-mediated isothermal amplification. Anal Bioanal Chem 410, 4371–4378 (2018). https://doi.org/10.1007/s00216-018-1088-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1088-5

Keywords

Navigation