Skip to main content

Advertisement

Log in

Allopregnanolone as a mediator of affective switching in reproductive mood disorders

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Reproductive mood disorders, including premenstrual dysphoria (PMD) and postpartum depression (PPD), are characterized by affective dysregulation that occurs during specific reproductive states. The occurrence of illness onset during changes in reproductive endocrine function has generated interest in the role of gonadal steroids in the pathophysiology of reproductive mood disorders, yet the mechanisms by which the changing hormone milieu triggers depression in susceptible women remain poorly understood.

Objectives

This review focuses on one of the neurosteroid metabolites of progesterone — allopregnanolone (ALLO) — that acutely regulates neuronal function and may mediate affective dysregulation that occurs concomitant with changes in reproductive endocrine function. We describe the role of the “neuroactive” steroids estradiol and progesterone in reproductive endocrine-related mood disorders to highlight the potential mechanisms by which ALLO might contribute to their pathophysiology. Finally, using existing data, we test the hypothesis that changes in ALLO levels may trigger affective dysregulation in susceptible women.

Results

Although there is no reliable evidence that basal ALLO levels distinguish those with PMD or PPD from those without, existing animal models suggest potential mechanisms by which specific reproductive states may unmask susceptibility to affective dysregulation. Consistent with these models, initially euthymic women with PMD and those with a history of PPD show a negative association between depressive symptoms and circulating ALLO levels following progesterone administration.

Conclusions

Existing animal models and our own preliminary data suggest that ALLO may play an important role in the pathophysiology of reproductive mood disorders by triggering affective dysregulation in susceptible women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akwa Y, Purdy RH, Koob GF, Britton KT (1999) The amygdala mediates the anxiolytic-like effect of the neurosteroid allopregnanolone in rat. Behav Brain Res 106:119–125. doi:10.1016/S0166-4328(99)00101-1

    CAS  PubMed  Google Scholar 

  • American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th ed. American Psychiatric Publishing, Arlington

    Google Scholar 

  • Baehr E, Rosenfeld P, Miller L, Baehr R (2004) Premenstrual dysphoric disorder and changes in frontal alpha asymmetry. Int J Psychophysiol Off J Int Organ Psychophysiol 52:159–167. doi:10.1016/j.ijpsycho.2003.06.002

    Google Scholar 

  • Baller EB, Wei S-M, Kohn PD et al (2013) Abnormalities of dorsolateral prefrontal function in women with premenstrual dysphoric disorder: a multimodal neuroimaging study. Am J Psychiatry 170:305–314. doi:10.1176/appi.ajp.2012.12030385

    PubMed Central  PubMed  Google Scholar 

  • Bannbers E, Gingnell M, Engman J et al (2012) The effect of premenstrual dysphoric disorder and menstrual cycle phase on brain activity during response inhibition. J Affect Disord 142:347–350. doi:10.1016/j.jad.2012.04.006

    PubMed  Google Scholar 

  • Barbaccia ML, Roscetti G, Trabucchi M et al (1997) The effects of inhibitors of GABAergic transmission and stress on brain and plasma allopregnanolone concentrations. Br J Pharmacol 120:1582–1588. doi:10.1038/sj.bjp.0701046

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABAA receptor. Nat Rev Neurosci 6:565–575. doi:10.1038/nrn1703

    CAS  PubMed  Google Scholar 

  • Berman KF, Schmidt PJ, Rubinow DR et al (1997) Modulation of cognition-specific cortical activity by gonadal steroids: a positron-emission tomography study in women. Proc Natl Acad Sci U S A 94:8836–8841

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bičíková M, Dibbelt L, Hiill M et al (2007) Allopregnanolone in women with premenstrual syndrome. Horm Metab Res 30:227–229. doi:10.1055/s-2007-978871

    Google Scholar 

  • Bitran D, Hilvers RJ, Kellogg CK (1991) Anxiolytic effects of 3α-hydroxy-5α[β]-pregnan-20-one: endogenous metabolites of progesterone that are active at the GABAA receptor. Brain Res 561:157–161. doi:10.1016/0006-8993(91)90761-J

    CAS  PubMed  Google Scholar 

  • Bitran D, Purdy RH, Kellog CK (1993) Anxiolytic effect of progesterone is associated with increases in cortical alloprenanolone and GABAA receptor function. Pharmacol Biochem Behav 45:423–428. doi:10.1016/0091-3057(93)90260-Z

    CAS  PubMed  Google Scholar 

  • Bixo M, Andersson A, Winblad B et al (1997) Progesterone, 5α-pregnane-3,20-dione and 3α-hydroxy-5α-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res 764:173–178. doi:10.1016/S0006-8993(97)00455-1

    CAS  PubMed  Google Scholar 

  • Bloch M, Schmidt PJ, Danaceau M et al (2000) Effects of gonadal steroids in women with a history of postpartum depression. Am J Psychiatry 157:924–930

    CAS  PubMed  Google Scholar 

  • Bortolato M, Devoto P, Roncada P et al (2011) Isolation rearing-induced reduction of brain 5α-reductase expression: relevance to dopaminergic impairments. Neuropharmacology 60:1301–1308. doi:10.1016/j.neuropharm.2011.01.013

    CAS  PubMed  Google Scholar 

  • Cardona-Gomez P, Perez M, Avila J et al (2004) Estradiol inhibits GSK3 and regulates interaction of estrogen receptors, GSK3, and beta-catenin in the hippocampus. Mol Cell Neurosci 25:363–373. doi:10.1016/j.mcn.2003.10.008

    CAS  PubMed  Google Scholar 

  • Carver CM, Reddy DS (2013) Neurosteroid interactions with synaptic and extrasynaptic GABAA receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology (Berl) 230:151–188. doi:10.1007/s00213-013-3276-5

    CAS  Google Scholar 

  • Davidson RJ (1998) Anterior electrophysiological asymmetries, emotion, and depression: conceptual and methodological conundrums. Psychophysiology 35:607–614

    CAS  PubMed  Google Scholar 

  • Deeks AA, Gibson-Helm ME, Teede HJ (2010) Anxiety and depression in polycystic ovary syndrome: a comprehensive investigation. Fertil Steril 93:2421–2423. doi:10.1016/j.fertnstert.2009.09.018

    PubMed  Google Scholar 

  • Deligiannidis KM, Sikoglu EM, Shaffer SA et al (2013) GABAergic neuroactive steroids and resting-state functional connectivity in postpartum depression: a preliminary study. J Psychiatr Res 47:816–828. doi:10.1016/j.jpsychires.2013.02.010

    PubMed Central  PubMed  Google Scholar 

  • Djebaili M, Guo Q, Pettus EH et al (2005) The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats. J Neurotrauma 22:106–118. doi:10.1089/neu.2005.22.106

    PubMed  Google Scholar 

  • Dowlati Y, Herrmann N, Swardfager W et al (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67:446–457. doi:10.1016/j.biopsych.2009.09.033

    CAS  PubMed  Google Scholar 

  • Dreher JC, Schmidt PJ, Kohn P et al (2007) Menstrual cycle phase modulates reward-related neural function in women. Proc Natl Acad Sci U S A 104(2465)

  • Dubrovsky B (2006) Neurosteroids, neuroactive steroids, and symptoms of affective disorders. Pharmacol Biochem Behav 84:644–655. doi:10.1016/j.pbb.2006.06.016

    CAS  PubMed  Google Scholar 

  • Epperson C, Haga K, Mason G et al (2002) Cortical γ-aminobutyric acid levels across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry 59:851–858. doi:10.1001/archpsyc.59.9.851

    CAS  PubMed  Google Scholar 

  • Epperson CN, Gueorguieva R, Czarkowski KA et al (2006) Preliminary evidence of reduced occipital GABA concentrations in puerperal women: a 1H-MRS study. Psychopharmacology (Berl) 186:425–433. doi:10.1007/s00213-006-0313-7

    CAS  Google Scholar 

  • Epperson CN, Steiner M, Hartlage SA et al (2012) Premenstrual dysphoric disorder: evidence for a new category for DSM-5. Am J Psychiatry 169:465–475

    PubMed Central  PubMed  Google Scholar 

  • Eser D, Schüle C, Baghai TC et al (2006) Neuroactive steroids in depression and anxiety disorders: clinical studies. Neuroendocrinology 84:244–254. doi:10.1159/000097879

    CAS  PubMed  Google Scholar 

  • Evans J, Sun Y, McGregor A, Connor B (2012) Allopregnanolone regulates neurogenesis and depressive/anxiety-like behaviour in a social isolation rodent model of chronic stress. Neuropharmacology 63:1315–1326. doi:10.1016/j.neuropharm.2012.08.012

    CAS  PubMed  Google Scholar 

  • Fassnacht M, Schlenz N, Schneider SB et al (2003) Beyond adrenal and ovarian androgen generation: increased peripheral 5α-reductase activity in women with polycystic ovary syndrome. J Clin Endocrinol Metab 88:2760–2766. doi:10.1210/jc.2002-021875

    CAS  PubMed  Google Scholar 

  • Finocchi C, Ferrari M (2011) Female reproductive steroids and neuronal excitability. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 32(Suppl 1):S31–S35. doi:10.1007/s10072-011-0532-5

    Google Scholar 

  • Foy MR, Baudry M, Akopian GK, Thompson RF (2010) Regulation of hippocampal synaptic plasticity by estrogen and progesterone. Vitam Horm 82:219–239. doi:10.1016/S0083-6729(10)82012-6

    CAS  PubMed  Google Scholar 

  • Freeman E, Rickels K, Sondheimer S, Polansky M (1990) Ineffectiveness of progesterone suppository treatment for premenstrual syndrome. JAMA 264:349–353. doi:10.1001/jama.1990.03450030073035

    CAS  PubMed  Google Scholar 

  • Freeman E, Rickels K, Sondheimer S, Polansky M (1995) A double-blind trial of oral progesterone, alprazolam, and placebo in treatment of severe premenstrual syndrome. JAMA 274:51–57. doi:10.1001/jama.1995.03530010065036

    CAS  PubMed  Google Scholar 

  • Freeman EW, Frye CA, Rickels K et al (2002) Allopregnanolone levels and symptom improvement in severe premenstrual syndrome. J Clin Psychopharmacol 22:516–520

    CAS  PubMed  Google Scholar 

  • Frye CA (2009) Neurosteroids’ effects and mechanisms for social, cognitive, emotional, and physical functions. Psychoneuroendocrinology 1:S143–S161. doi:10.1016/j.psyneuen.2009.07.005

    Google Scholar 

  • Frye CA, Duncan JE (1994) Progesterone metabolites, effective at the GABAA receptor complex, attenuate pain sensitivity in rats. Brain Res 643:194–203. doi:10.1016/0006-8993(94)90025-6

    CAS  PubMed  Google Scholar 

  • Gavin NI, Gaynes BN, Lohr KN et al (2005) Perinatal depression: a systematic review of prevalence and incidence. Obstet Gynecol 106:1071

    PubMed  Google Scholar 

  • Genazzani AR, Petraglia F, Bernardi F et al (1998) Circulating levels of allopregnanolone in humans: gender, age, and endocrine influences. J Clin Endocrinol Metab 83:2099–2103. doi:10.1210/jc.83.6.2099

    CAS  PubMed  Google Scholar 

  • Gilbert Evans SE, Ross LE, Sellers EM et al (2005) 3alpha-reduced neuroactive steroids and their precursors during pregnancy and the postpartum period. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol 21:268–279. doi:10.1080/09513590500361747

    CAS  Google Scholar 

  • Gingnell M, Morell A, Bannbers E et al (2012) Menstrual cycle effects on amygdala reactivity to emotional stimulation in premenstrual dysphoric disorder. Horm Behav 62:400–406. doi:10.1016/j.yhbeh.2012.07.005

    PubMed  Google Scholar 

  • Girdler SS, Straneva PA, Light KC et al (2001) Allopregnanolone levels and reactivity to mental stress in premenstrual dysphoric disorder. Biol Psychiatry 49:788–797

    CAS  PubMed  Google Scholar 

  • Glantz LA, Gilmore JH, Overstreet DH et al (2010) Pro-apoptotic Par-4 and dopamine D2 receptor in temporal cortex in schizophrenia, bipolar disorder and major depression. Schizophr Res 118:292–299. doi:10.1016/j.schres.2009.12.027

    PubMed Central  PubMed  Google Scholar 

  • Goldstein JM, Jerram M, Poldrack R et al (2005) Hormonal cycle modulates arousal circuitry in women using functional magnetic resonance imaging. J Neurosci Off J Soc Neurosci 25:9309–9316. doi:10.1523/JNEUROSCI.2239-05.2005

    CAS  Google Scholar 

  • Gotlib IH, Whiffen VE, Mount JH et al (1989) Prevalence rates and demographic characteristics associated with depression in pregnancy and the postpartum. J Consult Clin Psychol 57:269–274. doi:10.1037/0022-006X.57.2.269

    CAS  PubMed  Google Scholar 

  • Griffin LD, Mellon SH (1999) Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. Proc Natl Acad Sci 96:13512–13517. doi:10.1073/pnas.96.23.13512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guintivano J, Arad M, Gould TD et al (2013) Antenatal prediction of postpartum depression with blood DNA methylation biomarkers. Mol Psychiatry. doi:10.1038/mp.2013.62

    PubMed  Google Scholar 

  • He J, Evans C-O, Hoffman SW et al (2004) Progesterone and allopregnanolone reduce inflammatory cytokines after traumatic brain injury. Exp Neurol 189:404–412. doi:10.1016/j.expneurol.2004.06.008

    CAS  PubMed  Google Scholar 

  • Huo L, Straub RE, Roca C et al (2007) Risk for premenstrual dysphoric disorder is associated with genetic variation in ESR1, the estrogen receptor alpha gene. Biol Psychiatry 62:925–933. doi:10.1016/j.biopsych.2006.12.019

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kehoe P, Mallinson K, McCormick CM, Frye CA (2000) Central allopregnanolone is increased in rat pups in response to repeated, short episodes of neonatal isolation. Dev Brain Res 124:133–136. doi:10.1016/S0165-3806(00)00106-1

    CAS  Google Scholar 

  • Klatzkin RR, Leslie Morrow A, Light KC et al (2006) Associations of histories of depression and PMDD diagnosis with allopregnanolone concentrations following the oral administration of micronized progesterone. Psychoneuroendocrinology 31:1208–1219. doi:10.1016/j.psyneuen.2006.09.002

    CAS  PubMed  Google Scholar 

  • Lawrie TA, Herxheimer A, Dalton K (2000) Oestrogens and progestogens for preventing and treating postnatal depression. Cochrane Database Syst Rev CD001690. doi: 10.1002/14651858.CD001690

  • Licinio J, Wong ML (1999) The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol Psychiatry 4:317–327

    CAS  PubMed  Google Scholar 

  • MacKenzie G, Maguire J The role of ovarian hormone-derived neurosteroids on the regulation of GABAA receptors in affective disorders. Psychopharmacology (Berl) 1–10. doi: 10.1007/s00213-013-3423-z

  • Maguire J, Mody I (2008) GABAAR plasticity during pregnancy: relevance to postpartum depression. Neuron 59:207–213. doi:10.1016/j.neuron.2008.06.019

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maguire JL, Stell BM, Rafizadeh M, Mody I (2005) Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci 8:797–804

    CAS  PubMed  Google Scholar 

  • Maguire J, Ferando I, Simonsen C, Mody I (2009) Excitability changes related to GABAA receptor plasticity during pregnancy. J Neurosci 29:9592–9601. doi:10.1523/JNEUROSCI.2162-09.2009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mahon P, Payne J, MacKinnon D et al (2009) Genome-wide linkage and follow-up association study of postpartum mood symptoms. Am J Psychiatry 166:1229–1237. doi:10.1176/appi.ajp.2009.09030417

    PubMed Central  PubMed  Google Scholar 

  • Majewska MD, Harrison NL, Schwartz RD et al (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232:1004–1007

    CAS  PubMed  Google Scholar 

  • Matsui D, Sakari M, Sato T et al (2002) Transcriptional regulation of the mouse steroid 5α-reductase type II gene by progesterone in brain. Nucleic Acids Res 30:1387–1393. doi:10.1093/nar/30.6.1387

    CAS  PubMed Central  PubMed  Google Scholar 

  • McEwen BS (2002) Basic neurobiology of ovarian steroids: clinical implications. Dialogues Clin Neurosci 4:163–176

    Google Scholar 

  • Monteleone P, Luisi S, Tonetti A et al (2000) Allopregnanolone concentrations and premenstrual syndrome. Eur J Endocrinol Eur Fed Endocr Soc 142:269–273

    CAS  Google Scholar 

  • Morrow AL, Devaud LL, Purdy RH, Paul SM (1995) Neuroactive steroid modulators of the stress response. Ann N Y Acad Sci 771:257–272. doi:10.1111/j.1749-6632.1995.tb44687.x

    CAS  PubMed  Google Scholar 

  • Moses-Kolko EL, Perlman SB, Wisner KL et al (2010) Abnormally reduced dorsomedial prefrontal cortical activity and effective connectivity with amygdala in response to negative emotional faces in postpartum depression. Am J Psychiatry 167:1373–1380

    PubMed Central  PubMed  Google Scholar 

  • Moses-Kolko EL, Fraser D, Wisner KL et al (2011) Rapid habituation of ventral striatal response to reward receipt in postpartum depression. Biol Psychiatry 70:395–399

    PubMed Central  PubMed  Google Scholar 

  • O’Hara MW, Swain AM (1996) Rates and risk of postpartum depression—a meta-analysis. Int Rev Psychiatry 8:37–54. doi:10.3109/09540269609037816

    Google Scholar 

  • Patchev VK, Shoaib M, Holsboer F, Almeida OFX (1994) The neurosteroid tetrahydroprogesterone counteracts corticotropin-releasing hormone-induced anxiety and alters the release and gene expression of corticotropin-releasing hormone in the rat hypothalamus. Neuroscience 62:265–271. doi:10.1016/0306-4522(94)90330-1

    CAS  PubMed  Google Scholar 

  • Patchev VK, Hassan AHS, Holsboer F, Almeida OFX (1996) The neurosteroid tetrahydroprogesterone attenuates the endocrine response to stress and exerts glucocorticoid-like effects on vasopressin gene transcription in the rat hypothalamus. Neuropsychopharmacology 15:533–540. doi:10.1016/S0893-133X(96)00096-6

    CAS  PubMed  Google Scholar 

  • Pearlstein T, Yonkers KA, Fayyad R, Gillespie JA (2005) Pretreatment pattern of symptom expression in premenstrual dysphoric disorder. J Affect Disord 85:275–282. doi:10.1016/j.jad.2004.10.004

    PubMed  Google Scholar 

  • Pluchino N, Russo M, Santoro AN et al (2013) Steroid hormones and BDNF. Neuroscience 239:271–279. doi:10.1016/j.neuroscience.2013.01.025

    CAS  PubMed  Google Scholar 

  • Protopopescu X, Pan H, Altemus M et al (2005) Orbitofrontal cortex activity related to emotional processing changes across the menstrual cycle. Proc Natl Acad Sci U S A 102:16060–16065. doi:10.1073/pnas.0502818102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Protopopescu X, Tuescher O, Pan H et al (2008) Toward a functional neuroanatomy of premenstrual dysphoric disorder. J Affect Disord 108:87–94. doi:10.1016/j.jad.2007.09.015

    PubMed  Google Scholar 

  • Rapkin AJ, Morgan M, Goldman L et al (1997) Progesterone metabolite allopregnanolone in women with premenstrual syndrome. Obstet Gynecol 90:709–714. doi:10.1016/S0029-7844(97)00417-1

    CAS  PubMed  Google Scholar 

  • Rapkin AJ, Berman SM, Mandelkern MA et al (2011) Neuroimaging evidence of cerebellar involvement in premenstrual dysphoric disorder. Biol Psychiatry 69:374–380. doi:10.1016/j.biopsych.2010.09.029

    PubMed Central  PubMed  Google Scholar 

  • Romeo E, Ströhle A, Spalletta G et al (1998) Effects of antidepressant treatment on neuroactive steroids in major depression. Am J Psychiatry 155:910–913

    CAS  PubMed  Google Scholar 

  • Rubinow DR, Girdler SS (2011) Hormones, heart disease, and health: individualized medicine versus throwing the baby out with the bathwater. Depress Anxiety 28:282–296. doi:10.1002/da.20810

    PubMed  Google Scholar 

  • Sampson GA (1979) Premenstrual syndrome: a double-blind controlled trial of progesterone and placebo. Br J Psychiatry 135:209–215. doi:10.1192/bjp.135.3.209

    CAS  PubMed  Google Scholar 

  • Sayeed I, Parvez S, Wali B et al (2009) Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism for better neuroprotective effects of allopregnanolone over progesterone. Brain Res 1263:165–173. doi:10.1016/j.brainres.2009.01.045

    CAS  PubMed  Google Scholar 

  • Schmidt PJ, Purdy RH, Moore PH et al (1994) Circulating levels of anxiolytic steroids in the luteal phase in women with premenstrual syndrome and in control subjects. J Clin Endocrinol Metab 79:1256–1260. doi:10.1210/jc.79.5.1256

    CAS  PubMed  Google Scholar 

  • Schmidt PJ, Nieman LK, Danaceau MA et al (1998) Differential behavioral effects of gonadal steroids in women with and in those without premenstrual syndrome. N Engl J Med 338:209–216. doi:10.1056/NEJM199801223380401

    CAS  PubMed  Google Scholar 

  • Schüle C, Romeo E, Uzunov DP et al (2005) Influence of mirtazapine on plasma concentrations of neuroactive steroids in major depression and on 3α-hydroxysteroid dehydrogenase activity. Mol Psychiatry 11:261–272. doi:10.1038/sj.mp.4001782

    Google Scholar 

  • Schüle C, Baghai TC, di Michele F et al (2007) Effects of combination treatment with mood stabilizers and mirtazapine on plasma concentrations of neuroactive steroids in depressed patients. Psychoneuroendocrinology 32:669–680. doi:10.1016/j.psyneuen.2007.04.004

    PubMed  Google Scholar 

  • Schüle C, Eser D, Baghai TC et al (2011) Neuroactive steroids in affective disorders: target for novel antidepressant or anxiolytic drugs? Neuroscience 191:55–77. doi:10.1016/j.neuroscience.2011.03.025

    PubMed  Google Scholar 

  • Shelton RC, Claiborne J, Sidoryk-Wegrzynowicz M et al (2011) Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol Psychiatry 16:751–762. doi:10.1038/mp.2010.52

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen H, Gong QH, Aoki C et al (2007) Reversal of neurosteroid effects at α4β2δ GABAA receptors triggers anxiety at puberty. Nat Neurosci 10:469–477. doi:10.1038/nn1868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimizu E, Hashimoto K, Okamura N et al (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 54:70–75. doi:10.1016/S0006-3223(03)00181-1

    CAS  PubMed  Google Scholar 

  • Silverman ME, Loudon H, Safier M et al (2007) Neural dysfunction in postpartum depression: an fMRI pilot study. CNS Spectr 12:853–862

    PubMed  Google Scholar 

  • Smith SS, Gong QH, Hsu FC et al (1998a) GABA(A) receptor alpha4 subunit suppression prevents withdrawal properties of an endogenous steroid. Nature 392:926–930

    CAS  PubMed  Google Scholar 

  • Smith SS, Gong QH, Li X et al (1998b) Withdrawal from 3α-OH-5α-pregnan-20-one using a pseudopregnancy model alters the kinetics of hippocampal GABAA-gated current and increases the GABAA receptor α4 subunit in association with increased anxiety. J Neurosci 18:5275–5284

    CAS  PubMed  Google Scholar 

  • Smith MJ, Adams LF, Schmidt PJ et al (2002) Effects of ovarian hormones on human cortical excitability. Ann Neurol 51:599–603. doi:10.1002/ana.10180

    CAS  PubMed  Google Scholar 

  • Smith MJ, Adams LF, Schmidt PJ et al (2003) Abnormal luteal phase excitability of the motor cortex in women with premenstrual syndrome. Biol Psychiatry 54:757–762. doi:10.1016/S0006-3223(02)01924-8

    CAS  PubMed  Google Scholar 

  • Smith SS, Ruderman Y, Frye C et al (2006) Steroid withdrawal in the mouse results in anxiogenic effects of 3alpha,5beta-THP: a possible model of premenstrual dysphoric disorder. Psychopharmacology (Berl) 186:323–333. doi:10.1007/s00213-005-0168-3

    CAS  Google Scholar 

  • Sohrabji F, Greene LA, Miranda RC, Toran-Allerand CD (1994a) Reciprocal regulation of estrogen and NGF receptors by their ligands in PC12 cells. J Neurobiol 25:974–988. doi:10.1002/neu.480250807

    CAS  PubMed  Google Scholar 

  • Sohrabji F, Miranda RC, Toran-Allerand CD (1994b) Estrogen differentially regulates estrogen and nerve growth factor receptor mRNAs in adult sensory neurons. J Neurosci Off J Soc Neurosci 14:459–471

    CAS  Google Scholar 

  • Sorwell KG, Kohama SG, Urbanski HF (2012) Perimenopausal regulation of steroidogenesis in the nonhuman primate. Neurobiol Aging 33:1487.e1–1487.e13. doi:10.1016/j.neurobiolaging.2011.05.0

    CAS  Google Scholar 

  • Ströhle A, Romeo E, Hermann B et al (1999) Concentrations of 3α-reduced neuroactive steroids and their precursors in plasma of patients with major depression and after clinical recovery. Biol Psychiatry 45:274–277. doi:10.1016/S0006-3223(98)00328-X

    PubMed  Google Scholar 

  • Sundström Poromaa I, Smith S, Gulinello M (2003) GABA receptors, progesterone and premenstrual dysphoric disorder. Arch Womens Ment Health 6:23–41. doi:10.1007/s00737-002-0147-1

    PubMed  Google Scholar 

  • Sundström I, Bäckström T (1998) Citalopram increases pregnanolone sensitivity in patients with premenstrual syndrome: an open trial. Psychoneuroendocrinology 23:73–88. doi:10.1016/S0306-4530(97)00064-4

    PubMed  Google Scholar 

  • Sundström I, Nyberg S, Bäckström T (1997) Patients with premenstrual syndrome have reduced sensitivity to midazolam compared to control subjects. Neuropsychopharmacology 17:370–381. doi:10.1016/S0893-133X(97)00086-9

    PubMed  Google Scholar 

  • Sundström I, Andersson A, Nyberg S et al (1998) Patients with premenstrual syndrome have a different sensitivity to a neuroactive steroid during the menstrual cycle compared to control subjects. Neuroendocrinology 67:126–138. doi:10.1159/000054307

    PubMed  Google Scholar 

  • Taniguchi F, Couse JF, Rodriguez KF et al (2007) Estrogen receptor-α mediates an intraovarian negative feedback loop on thecal cell steroidogenesis via modulation of Cyp17a1 (cytochrome P450, steroid 17α-hydroxylase/17,20 lyase) expression. FASEB J 21:586–595. doi:10.1096/fj.06-6681com

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tiemstra JD, Patel K (1998) Hormonal therapy in the management of premenstrual syndrome. J Am Board Fam Pract 11:378–381. doi:10.3122/15572625-11-5-378

    CAS  PubMed  Google Scholar 

  • Tomarken AJ, Dichter GS, Garber J, Simien C (2004) Resting frontal brain activity: linkages to maternal depression and socio-economic status among adolescents. Biol Psychol 67:77–102. doi:10.1016/j.biopsycho.2004.03.011

    PubMed  Google Scholar 

  • Tuohy A, McVey C (2008) Subscales measuring symptoms of non-specific depression, anhedonia, and anxiety in the Edinburgh Postnatal Depression Scale. Br J Clin Psychol 47:153–169

    PubMed  Google Scholar 

  • Uzunov DP, Cooper TB, Costa E, Guidotti A (1996) Fluoxetine-elicited changes in brain neurosteroid content measured by negative ion mass fragmentography. Proc Natl Acad Sci 93:12599–12604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uzunova V, Sheline Y, Davis JM et al (1998) Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc Natl Acad Sci 95:3239–3244

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walf AA, Frye CA (2006) A review and update of mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior. Neuropsychopharmacology 31:1097–1111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang M, Seippel L, Purdy RH, Bãckström T (1996) Relationship between symptom severity and steroid variation in women with premenstrual syndrome: study on serum pregnenolone, pregnenolone sulfate, 5 alpha-pregnane-3,20-dione and 3 alpha-hydroxy-5 alpha-pregnan-20-one. J Clin Endocrinol Metab 81:1076–1082. doi:10.1210/jc.81.3.1076

    CAS  PubMed  Google Scholar 

  • Wieland S, Lan NC, Mirasedeghi S, Gee KW (1991) Anxiolytic activity of the progesterone metabolite 5α-pregnan-3α-ol-20-one. Brain Res 565:263–268. doi:10.1016/0006-8993(91)91658-N

    CAS  PubMed  Google Scholar 

  • Zhou Y, Watters JJ, Dorsa DM (1996) Estrogen rapidly induces the phosphorylation of the cAMP response element binding protein in rat brain. Endocrinology 137:2163–2166. doi:10.1210/en.137.5.2163

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crystal Edler Schiller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiller, C.E., Schmidt, P.J. & Rubinow, D.R. Allopregnanolone as a mediator of affective switching in reproductive mood disorders. Psychopharmacology 231, 3557–3567 (2014). https://doi.org/10.1007/s00213-014-3599-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3599-x

Keywords

Navigation