Skip to main content
Log in

Natriuretic peptide receptor B signaling in the cardiovascular system: protection from cardiac hypertrophy

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Natriuretic peptides (NP) represent a family of structurally homologous but genetically distinct peptide hormones involved in regulation of fluid and electrolyte balance, blood pressure, fat metabolism, cell proliferation, and long bone growth. Recent work suggests a role for natriuretic peptide receptor B (NPR-B) signaling in regulation of cardiac growth by either a direct effect on cardiomyocytes or by modulation of other signaling pathways including the autonomic nervous system. The research links NPR-B for the first time to a cardiac phenotype in vivo and underlines the importance of the NP in the cardiovascular system. This manuscript will focus on the role of NPR-B and its ligand C-type natriuretic peptide in cardiovascular physiology and disease and will evaluate these new findings in the context of the known function of this receptor, with a perspective on how future research might further elucidate NPR-B function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CNP:

C-type natriuretic peptide

NPR-B:

natriuretic peptide receptor B

References

  1. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94

    PubMed  Google Scholar 

  2. Kangawa K, Matsuo H (1984) Purification and complete amino acid sequence of alpha-human atrial natriuretic polypeptide (alpha-hANP). Biochem Biophys Res Commun 118:131–139

    PubMed  CAS  Google Scholar 

  3. Hamet P, Tremblay J, Pang SC, Garcia R, Thibault G, Gutkowska J, Cantin M, Genest J (1984) Effect of native and synthetic atrial natriuretic factor on cyclic GMP. Biochem Biophys Res Commun 123:515–527

    Article  PubMed  CAS  Google Scholar 

  4. Sudoh T, Kangawa K, Minamino N, Matsuo H (1988) A new natriuretic peptide in porcine brain. Nature 332:78–81

    PubMed  CAS  Google Scholar 

  5. Sudoh T, Minamino N, Kangawa K, Matsuo H (1990) C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun 168:863–870

    PubMed  CAS  Google Scholar 

  6. Inoue K, Naruse K, Yamagami S, Mitani H, Suzuki N, Takei Y (2003) Four functionally distinct C-type natriuretic peptides found in fish reveal evolutionary history of the natriuretic peptide system. Proc Natl Acad Sci USA 100:10079–10084

    PubMed  CAS  Google Scholar 

  7. Misono KS, Fukumi H, Grammer RT, Inagami T (1984) Rat atrial natriuretic factor: complete amino acid sequence and disulfide linkage essential for biological activity. Biochem Biophys Res Commun 119:524–529

    PubMed  CAS  Google Scholar 

  8. Vandlen RL, Arcuri KE, Napier MA (1985) Identification of a receptor for atrial natriuretic factor in rabbit aorta membranes by affinity cross-linking. J Biol Chem 260:10889–10892

    PubMed  CAS  Google Scholar 

  9. Yip CC, Laing LP, Flynn TG (1985) Photoaffinity labeling of atrial natriuretic factor receptors of rat kidney cortex plasma membranes. J Biol Chem 260:8229–8232

    PubMed  CAS  Google Scholar 

  10. Chinkers M, Garbers DL, Chang MS, Lowe DG, Chin HM, Goeddel DV, Schulz S (1989) A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338:78–83

    PubMed  CAS  Google Scholar 

  11. Chang MS, Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV (1989) Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature 341:68–72

    PubMed  CAS  Google Scholar 

  12. Schulz S, Singh S, Bellet RA, Singh G, Tubb DJ, Chin H, Garbers DL (1989) The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 58:1155–1162

    PubMed  CAS  Google Scholar 

  13. Suga S, Nakao K, Hosoda K, Mukoyama M, Ogawa Y, Shirakami G, Arai H, Saito Y, Kambayashi Y, Inouye K et al (1992) Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. Endocrinology 130:229–239

    PubMed  CAS  Google Scholar 

  14. He XL, Dukkipati A, Garcia KC (2006) Structural determinants of natriuretic peptide receptor specificity and degeneracy. J Mol Biol 361:698–714

    PubMed  CAS  Google Scholar 

  15. Deschenes J, Dupere C, McNicoll N, L’Heureux N, Auger F, Fournier A, De Lean A (2005) Development of a selective peptide antagonist for the human natriuretic peptide receptor-B. Peptides 26:517–524

    PubMed  CAS  Google Scholar 

  16. Morishita Y, Sano T, Ando K, Saitoh Y, Kase H, Yamada K, Matsuda Y (1991) Microbial polysaccharide, HS-142-1, competitively and selectively inhibits ANP binding to its guanylyl cyclase-containing receptor. Biochem Biophys Res Commun 176:949–957

    PubMed  CAS  Google Scholar 

  17. Poirier H, Labrecque J, Deschenes J, DeLean A (2002) Allotopic antagonism of the non-peptide atrial natriuretic peptide (ANP) antagonist HS-142-1 on natriuretic peptide receptor NPR-A. Biochem J 362:231–237

    PubMed  CAS  Google Scholar 

  18. John SW, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, Flynn TG, Smithies O (1995) Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 267:679–681

    PubMed  CAS  Google Scholar 

  19. Tamura N, Ogawa Y, Chusho H, Nakamura K, Nakao K, Suda M, Kasahara M, Hashimoto R, Katsuura G, Mukoyama M, Itoh H, Saito Y, Tanaka I, Otani H, Katsuki M (2000) Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci USA 97:4239–4244

    PubMed  CAS  Google Scholar 

  20. Lopez MJ, Wong SK, Kishimoto I, Dubois S, Mach V, Friesen J, Garbers DL, Beuve A (1995) Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature 378:65–68

    PubMed  CAS  Google Scholar 

  21. Chusho H, Tamura N, Ogawa Y, Yasoda A, Suda M, Miyazawa T, Nakamura K, Nakao K, Kurihara T, Komatsu Y, Itoh H, Tanaka K, Saito Y, Katsuki M, Nakao K (2001) Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci USA 98:4016–4021

    PubMed  CAS  Google Scholar 

  22. Tamura N, Doolittle LK, Hammer RE, Shelton JM, Richardson JA, Garbers DL (2004) Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs. Proc Natl Acad Sci USA 101:17300–17305

    PubMed  CAS  Google Scholar 

  23. Langenickel TH, Buttgereit J, Pagel-Langenickel I, Lindner M, Monti J, Beuerlein K, Al-Saadi N, Plehm R, Popova E, Tank J, Dietz R, Willenbrock R, Bader M (2006) Cardiac hypertrophy in transgenic rats expressing a dominant-negative mutant of the natriuretic peptide receptor B. Proc Natl Acad Sci USA 103:4735–4740

    PubMed  CAS  Google Scholar 

  24. Stepan H, Leitner E, Bader M, Walther T (2000) Organ-specific mRNA distribution of C-type natriuretic peptide in neonatal and adult mice. Regul Pept 95:81–85

    PubMed  CAS  Google Scholar 

  25. Suga S, Nakao K, Itoh H, Komatsu Y, Ogawa Y, Hama N, Imura H (1992) Endothelial production of C-type natriuretic peptide and its marked augmentation by transforming growth factor-beta. Possible existence of “vascular natriuretic peptide system”. J Clin Invest 90:1145–1149

    PubMed  CAS  Google Scholar 

  26. Suga S, Itoh H, Komatsu Y, Ogawa Y, Hama N, Yoshimasa T, Nakao K (1993) Cytokine-induced C-type natriuretic peptide (CNP) secretion from vascular endothelial cells—evidence for CNP as a novel autocrine/paracrine regulator from endothelial cells. Endocrinology 133:3038–3041

    PubMed  CAS  Google Scholar 

  27. Chun TH, Itoh H, Ogawa Y, Tamura N, Takaya K, Igaki T, Yamashita J, Doi K, Inoue M, Masatsugu K, Korenaga R, Ando J, Nakao K (1997) Shear stress augments expression of C-type natriuretic peptide and adrenomedullin. Hypertension 29:1296–1302

    PubMed  CAS  Google Scholar 

  28. Wu C, Wu F, Pan J, Morser J, Wu Q (2003) Furin-mediated processing of pro-C-type natriuretic peptide. J Biol Chem 278:25847–25852

    PubMed  CAS  Google Scholar 

  29. Stingo AJ, Clavell AL, Heublein DM, Wei CM, Pittelkow MR, Burnett JC Jr (1992) Presence of C-type natriuretic peptide in cultured human endothelial cells and plasma. Am J Physiol 263:H1318–H1321

    PubMed  CAS  Google Scholar 

  30. Minamino N, Makino Y, Tateyama H, Kangawa K, Matsuo H (1991) Characterization of immunoreactive human C-type natriuretic peptide in brain and heart. Biochem Biophys Res Commun 179:535–542

    PubMed  CAS  Google Scholar 

  31. Togashi K, Kameya T, Kurosawa T, Hasegawa N, Kawakami M (1992) Concentrations and molecular forms of C-type natriuretic peptide in brain and cerebrospinal fluid. Clin Chem 38:2136–2139

    PubMed  CAS  Google Scholar 

  32. Wei CM, Hu S, Miller VM, Burnett JC Jr (1994) Vascular actions of C-type natriuretic peptide in isolated porcine coronary arteries and coronary vascular smooth muscle cells. Biochem Biophys Res Commun 205:765–771

    PubMed  CAS  Google Scholar 

  33. Hutchinson HG, Trindade PT, Cunanan DB, Wu CF, Pratt RE (1997) Mechanisms of natriuretic-peptide-induced growth inhibition of vascular smooth muscle cells. Cardiovasc Res 35:158–167

    PubMed  CAS  Google Scholar 

  34. Furuya M, Yoshida M, Hayashi Y, Ohnuma N, Minamino N, Kangawa K, Matsuo H (1991) C-type natriuretic peptide is a growth inhibitor of rat vascular smooth muscle cells. Biochem Biophys Res Commun 177:927–931

    PubMed  CAS  Google Scholar 

  35. Barton M, Beny JL, d’Uscio LV, Wyss T, Noll G, Luscher TF (1998) Endothelium-independent relaxation and hyperpolarization to C-type natriuretic peptide in porcine coronary arteries. J Cardiovasc Pharmacol 31:377–383

    PubMed  CAS  Google Scholar 

  36. Honing ML, Smits P, Morrison PJ, Burnett JC Jr, Rabelink TJ (2001) C-type natriuretic peptide-induced vasodilation is dependent on hyperpolarization in human forearm resistance vessels. Hypertension 37:1179–1183

    PubMed  CAS  Google Scholar 

  37. Chauhan SD, Nilsson H, Ahluwalia A, Hobbs AJ (2003) Release of C-type natriuretic peptide accounts for the biological activity of endothelium-derived hyperpolarizing factor. Proc Natl Acad Sci USA 100:1426–1431

    PubMed  CAS  Google Scholar 

  38. Wei CM, Heublein DM, Perrella MA, Lerman A, Rodeheffer RJ, McGregor CG, Edwards WD, Schaff HV, Burnett JC Jr (1993) Natriuretic peptide system in human heart failure. Circulation 88:1004–1009

    PubMed  CAS  Google Scholar 

  39. Del Ry S, Passino C, Maltinti M, Emdin M, Giannessi D (2005) C-type natriuretic peptide plasma levels increase in patients with chronic heart failure as a function of clinical severity. Eur J Heart Fail 7:1145–1148

    PubMed  Google Scholar 

  40. Del Ry S, Maltinti M, Piacenti M, Passino C, Emdin M, Giannessi D (2006) Cardiac production of C-type natriuretic peptide in heart failure. J Cardiovasc Med (Hagerstown) 7:397–399

    Article  Google Scholar 

  41. Hama N, Itoh H, Shirakami G, Suga S, Komatsu Y, Yoshimasa T, Tanaka I, Mori K, Nakao K (1994) Detection of C-type natriuretic peptide in human circulation and marked increase of plasma CNP level in septic shock patients. Biochem Biophys Res Commun 198:1177–1182

    PubMed  CAS  Google Scholar 

  42. Nagase M, Katafuchi T, Hirose S, Fujita T (1997) Tissue distribution and localization of natriuretic peptide receptor subtypes in stroke-prone spontaneously hypertensive rats. J Hypertens 15:1235–1243

    PubMed  CAS  Google Scholar 

  43. Herman JP, Dolgas CM, Rucker D, Langub MC Jr (1996) Localization of natriuretic peptide-activated guanylate cyclase mRNAs in the rat brain. J Comp Neurol 369:165–187

    PubMed  CAS  Google Scholar 

  44. Wilcox JN, Augustine A, Goeddel DV, Lowe DG (1991) Differential regional expression of three natriuretic peptide receptor genes within primate tissues. Mol Cell Biol 11:3454–3462

    PubMed  CAS  Google Scholar 

  45. Miyagi M, Misono KS (2000) Disulfide bond structure of the atrial natriuretic peptide receptor extracellular domain: conserved disulfide bonds among guanylate cyclase-coupled receptors. Biochim Biophys Acta 1478:30–38

    PubMed  CAS  Google Scholar 

  46. Langenickel T, Buttgereit J, Pagel I, Dietz R, Willenbrock R, Bader M (2004) Forced homodimerization by site-directed mutagenesis alters guanylyl cyclase activity of natriuretic peptide receptor B. Hypertension 43:460–465

    PubMed  CAS  Google Scholar 

  47. Potter LR, Hunter T (1998) Identification and characterization of the major phosphorylation sites of the B-type natriuretic peptide receptor. J Biol Chem 273:15533–15539

    PubMed  CAS  Google Scholar 

  48. Chinkers M, Wilson EM (1992) Ligand-independent oligomerization of natriuretic peptide receptors. Identification of heteromeric receptors and a dominant negative mutant. J Biol Chem 267:18589–18597

    PubMed  CAS  Google Scholar 

  49. Ogawa H, Qiu Y, Ogata CM, Misono KS (2004) Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction. J Biol Chem 279:28625–28631

    PubMed  CAS  Google Scholar 

  50. Chinkers M, Garbers DL (1989) The protein kinase domain of the ANP receptor is required for signaling. Science 245:1392–1394

    PubMed  CAS  Google Scholar 

  51. van den Akker F, Zhang X, Miyagi M, Huo X, Misono KS, Yee VC (2000) Structure of the dimerized hormone-binding domain of a guanylyl-cyclase-coupled receptor. Nature 406:101–104

    PubMed  Google Scholar 

  52. Anand-Srivastava MB (2005) Natriuretic peptide receptor-C signaling and regulation. Peptides 26:1044–1059

    PubMed  CAS  Google Scholar 

  53. Clavell AL, Stingo AJ, Wei CM, Heublein DM, Burnett JC Jr (1993) C-type natriuretic peptide: a selective cardiovascular peptide. Am J Physiol 264:R290–R295

    PubMed  CAS  Google Scholar 

  54. Otsuka K, Tanaka H, Horinouchi T, Koike K, Shigenobu K, Tanaka Y (2002) Functional contribution of voltage-dependent and Ca2+ activated K+ (BK(Ca)) channels to the relaxation of guinea-pig aorta in response to natriuretic peptides. J Smooth Muscle Res 38:117–129

    Google Scholar 

  55. Banks M, Wei CM, Kim CH, Burnett JC Jr, Miller VM (1996) Mechanism of relaxations to C-type natriuretic peptide in veins. Am J Physiol 271:H1907–H1911

    PubMed  CAS  Google Scholar 

  56. Wennberg PW, Miller VM, Rabelink T, Burnett JC Jr (1999) Further attenuation of endothelium-dependent relaxation imparted by natriuretic peptide receptor antagonism. Am J Physiol 277:H1618–H1621

    PubMed  CAS  Google Scholar 

  57. Madhani M, Scotland RS, MacAllister RJ, Hobbs AJ (2003) Vascular natriuretic peptide receptor-linked particulate guanylate cyclases are modulated by nitric oxide–cyclic GMP signaling. Br J Pharmacol 139:1289–1296

    PubMed  CAS  Google Scholar 

  58. Steinmetz M, Potthast R, Sabrane K, Kuhn M (2004) Diverging vasorelaxing effects of C-type natriuretic peptide in renal resistance arteries and aortas of GC-A-deficient mice. Regul Pept 119:31–37

    PubMed  CAS  Google Scholar 

  59. Igaki T, Itoh H, Suga SI, Hama N, Ogawa Y, Komatsu Y, Yamashita J, Doi K, Chun TH, Nakao K (1998) Effects of intravenously administered C-type natriuretic peptide in humans: comparison with atrial natriuretic peptide. Hypertens Res 21:7–13

    PubMed  CAS  Google Scholar 

  60. Stingo AJ, Clavell AL, Aarhus LL, Burnett JC Jr (1992) Cardiovascular and renal actions of C-type natriuretic peptide. Am J Physiol 262:H308–H312

    PubMed  CAS  Google Scholar 

  61. Endlich K, Steinhausen M (1997) Natriuretic peptide receptors mediate different responses in rat renal microvessels. Kidney Int 52:202–207

    PubMed  CAS  Google Scholar 

  62. Scotland RS, Ahluwalia A, Hobbs AJ (2005) C-type natriuretic peptide in vascular physiology and disease. Pharmacol Ther 105:85–93

    PubMed  CAS  Google Scholar 

  63. Tolsa JF, Gao Y, Sander FC, Souici AC, Moessinger A, Raj JU (2002) Differential responses of newborn pulmonary arteries and veins to atrial and C-type natriuretic peptides. Am J Physiol Heart Circ Physiol 282:H273–H280

    PubMed  CAS  Google Scholar 

  64. Barletta G, Lazzeri C, Vecchiarino S, Del Bene R, Messeri G, Dello Sbarba A, Mannelli M, La Villa G (1998) Low-dose C-type natriuretic peptide does not affect cardiac and renal function in humans. Hypertension 31:802–808

    PubMed  CAS  Google Scholar 

  65. Komarek M, Bernheim A, Schindler R, Steden R, Kiowski W, Brunner-La Rocca HP (2004) Vascular effects of natriuretic peptides in healthy men. J Cardiovasc Pharmacol Ther 9:263–270

    PubMed  CAS  Google Scholar 

  66. Horio T, Tokudome T, Maki T, Yoshihara F, Suga S, Nishikimi T, Kojima M, Kawano Y, Kangawa K (2003) Gene expression, secretion, and autocrine action of C-type natriuretic peptide in cultured adult rat cardiac fibroblasts. Endocrinology 144:2279–2284

    PubMed  CAS  Google Scholar 

  67. Ikeda M, Kohno M, Yasunari K, Yokokawa K, Horio T, Ueda M, Morisaki N, Yoshikawa J (1997) Natriuretic peptide family as a novel antimigration factor of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 17:731–736

    PubMed  CAS  Google Scholar 

  68. Kuhnl A, Pelisek J, Tian W, Kuhlmann M, Rolland PH, Mekkaoui C, Fuchs A, Nikol S (2005) C-type natriuretic peptide inhibits constrictive remodeling without compromising re-endothelialization in balloon-dilated renal arteries. J Endovasc Ther 12:171–182

    PubMed  Google Scholar 

  69. Qian JY, Haruno A, Asada Y, Nishida T, Saito Y, Matsuda T, Ueno H (2002) Local expression of C-type natriuretic peptide suppresses inflammation, eliminates shear stress-induced thrombosis, and prevents neointima formation through enhanced nitric oxide production in rabbit injured carotid arteries. Circ Res 91:1063–1069

    PubMed  CAS  Google Scholar 

  70. Barber MN, Gaspari TA, Kairuz EM, Dusting GJ, Woods RL (2005) Atrial natriuretic peptide preserves endothelial function during intimal hyperplasia. J Vasc Res 42:101–110

    PubMed  CAS  Google Scholar 

  71. Bouchie JL, Hansen H, Feener EP (1998) Natriuretic factors and nitric oxide suppress plasminogen activator inhibitor-1 expression in vascular smooth muscle cells. Role of cGMP in the regulation of the plasminogen system. Arterioscler Thromb Vasc Biol 18:1771–1779

    PubMed  CAS  Google Scholar 

  72. Kairuz EM, Barber MN, Anderson CR, Kanagasundaram M, Drummond GR, Woods RL (2005) C-type natriuretic peptide (CNP) suppresses plasminogen activator inhibitor-1 (PAI-1) in vivo. Cardiovasc Res 66:574–582

    PubMed  CAS  Google Scholar 

  73. Murakami S, Nagaya N, Itoh T, Fujii T, Iwase T, Hamada K, Kimura H, Kangawa K (2004) C-type natriuretic peptide attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol 287:L1172–L1177

    PubMed  CAS  Google Scholar 

  74. Scotland RS, Cohen M, Foster P, Lovell M, Mathur A, Ahluwalia A, Hobbs AJ (2005) C-type natriuretic peptide inhibits leukocyte recruitment and platelet-leukocyte interactions via suppression of P-selectin expression. Proc Natl Acad Sci USA 102:14452–14457

    PubMed  CAS  Google Scholar 

  75. Brown J, Chen Q, Hong G (1997) An autocrine system for C-type natriuretic peptide within rat carotid neointima during arterial repair. Am J Physiol 272:H2919–H2931

    PubMed  CAS  Google Scholar 

  76. Brown J, Chen Q (1995) Regional expression of natriuretic peptide receptors during the formation of arterial neointima in the rabbit. Circ Res 77:906–918

    PubMed  CAS  Google Scholar 

  77. Naruko T, Itoh A, Haze K, Ehara S, Fukushima H, Sugama Y, Shirai N, Ikura Y, Ohsawa M, Ueda M (2005) C-type natriuretic peptide and natriuretic peptide receptors are expressed by smooth muscle cells in the neointima after percutaneous coronary intervention. Atherosclerosis 181:241–250

    PubMed  CAS  Google Scholar 

  78. Casco VH, Veinot JP, Kuroski de Bold ML, Masters RG, Stevenson MM, de Bold AJ (2002) Natriuretic peptide system gene expression in human coronary arteries. J Histochem Cytochem 50:799–809

    PubMed  CAS  Google Scholar 

  79. Yamahara K, Itoh H, Chun TH, Ogawa Y, Yamashita J, Sawada N, Fukunaga Y, Sone M, Yurugi-Kobayashi T, Miyashita K, Tsujimoto H, Kook H, Feil R, Garbers DL, Hofmann F, Nakao K (2003) Significance and therapeutic potential of the natriuretic peptides/cGMP/cGMP-dependent protein kinase pathway in vascular regeneration. Proc Natl Acad Sci USA 100:3404–3409

    PubMed  CAS  Google Scholar 

  80. Doi K, Itoh H, Komatsu Y, Igaki T, Chun TH, Takaya K, Yamashita J, Inoue M, Yoshimasa T, Nakao K (1996) Vascular endothelial growth factor suppresses C-type natriuretic peptide secretion. Hypertension 27:811–815

    PubMed  CAS  Google Scholar 

  81. Wakatsuki T, Schlessinger J, Elson EL (2004) The biochemical response of the heart to hypertension and exercise. Trends Biochem Sci 29:609–617

    PubMed  CAS  Google Scholar 

  82. Tokudome T, Horio T, Soeki T, Mori K, Kishimoto I, Suga S, Yoshihara F, Kawano Y, Kohno M, Kangawa K (2004) Inhibitory effect of C-type natriuretic peptide (CNP) on cultured cardiac myocyte hypertrophy: interference between CNP and endothelin-1 signaling pathways. Endocrinology 145:2131–2140

    PubMed  CAS  Google Scholar 

  83. Rosenkranz AC, Woods RL, Dusting GJ, Ritchie RH (2003) Antihypertrophic actions of the natriuretic peptides in adult rat cardiomyocytes: importance of cyclic GMP. Cardiovasc Res 57:515–522

    PubMed  CAS  Google Scholar 

  84. Lelievre V, Pineau N, Hu Z, Ioffe Y, Byun JY, Muller JM, Waschek JA (2001) Proliferative actions of natriuretic peptides on neuroblastoma cells. Involvement of guanylyl cyclase and non-guanylyl cyclase pathways. J Biol Chem 276:43668–43676

    PubMed  CAS  Google Scholar 

  85. D’Souza SP, Davis M, Baxter GF (2004) Autocrine and paracrine actions of natriuretic peptides in the heart. Pharmacol Ther 101:113–129

    PubMed  CAS  Google Scholar 

  86. Han B, Fixler R, Beeri R, Wang Y, Bachrach U, Hasin Y (2003) The opposing effects of endothelin-1 and C-type natriuretic peptide on apoptosis of neonatal rat cardiac myocytes. Eur J Pharmacol 474:15–20

    PubMed  CAS  Google Scholar 

  87. Doyle DD, Upshaw-Earley J, Bell EL, Palfrey HC (2002) Natriuretic peptide receptor-B in adult rat ventricle is predominantly confined to the nonmyocyte population. Am J Physiol Heart Circ Physiol 282:H2117–H2123

    PubMed  CAS  Google Scholar 

  88. Soeki T, Kishimoto I, Okumura H, Tokudome T, Horio T, Mori K, Kangawa K (2005) C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J Am Coll Cardiol 45:608–616

    PubMed  CAS  Google Scholar 

  89. Christoffersen C, Bartels ED, Nielsen LB (2006) Heart specific up-regulation of genes for B-type and C-type natriuretic peptide receptors in diabetic mice. Eur J Clin Invest 36:69–75

    PubMed  CAS  Google Scholar 

  90. Itoh T, Nagaya N, Murakami S, Fujii T, Iwase T, Ishibashi-Ueda H, Yutani C, Yamagishi M, Kimura H, Kangawa K (2004) C-type natriuretic peptide ameliorates monocrotaline-induced pulmonary hypertension in rats. Am J Respir Crit Care Med 170:1204–1211

    PubMed  Google Scholar 

  91. Kalra PR, Clague JR, Bolger AP, Anker SD, Poole-Wilson PA, Struthers AD, Coats AJ (2003) Myocardial production of C-type natriuretic peptide in chronic heart failure. Circulation 107:571–573

    PubMed  CAS  Google Scholar 

  92. Beaulieu P, Cardinal R, Page P, Francoeur F, Tremblay J, Lambert C (1997) Positive chronotropic and inotropic effects of C-type natriuretic peptide in dogs. Am J Physiol 273:H1933–H1940

    PubMed  CAS  Google Scholar 

  93. Lainchbury JG, Burnett JC Jr, Meyer D, Redfield MM (2000) Effects of natriuretic peptides on load and myocardial function in normal and heart failure dogs. Am J Physiol Heart Circ Physiol 278:H33–H40

    PubMed  CAS  Google Scholar 

  94. Wollert KC, Yurukova S, Kilic A, Begrow F, Fiedler B, Gambaryan S, Walter U, Lohmann SM, Kuhn M (2003) Increased effects of C-type natriuretic peptide on contractility and calcium regulation in murine hearts overexpressing cyclic GMP-dependent protein kinase I. Br J Pharmacol 140:1227–1236

    PubMed  CAS  Google Scholar 

  95. Pierkes M, Gambaryan S, Boknik P, Lohmann SM, Schmitz W, Potthast R, Holtwick R, Kuhn M (2002) Increased effects of C-type natriuretic peptide on cardiac ventricular contractility and relaxation in guanylyl cyclase A-deficient mice. Cardiovasc Res 53:852–861

    PubMed  CAS  Google Scholar 

  96. Hirose M, Furukawa Y, Kurogouchi F, Nakajima K, Miyashita Y, Chiba S (1998) C-type natriuretic peptide increases myocardial contractility and sinus rate mediated by guanylyl cyclase-linked natriuretic peptide receptors in isolated, blood-perfused dog heart preparations. J Pharmacol Exp Ther 286:70–76

    PubMed  CAS  Google Scholar 

  97. Brusq JM, Mayoux E, Guigui L, Kirilovsky J (1999) Effects of C-type natriuretic peptide on rat cardiac contractility. Br J Pharmacol 128:206–212

    PubMed  CAS  Google Scholar 

  98. Nir A, Zhang DF, Fixler R, Burnett JC Jr, Eilam Y, Hasin Y (2001) C-type natriuretic peptide has a negative inotropic effect on cardiac myocytes. Eur J Pharmacol 412:195–201

    PubMed  CAS  Google Scholar 

  99. Su J, Zhang Q, Moalem J, Tse J, Scholz PM, Weiss HR (2005) Functional effects of C-type natriuretic peptide and nitric oxide are attenuated in hypertrophic myocytes from pressure-overloaded mouse hearts. Am J Physiol Heart Circ Physiol 288:H1367–H1373

    PubMed  CAS  Google Scholar 

  100. Zhang Q, Moalem J, Tse J, Scholz PM, Weiss HR (2005). Effects of natriuretic peptides on ventricular myocyte contraction and role of cyclic GMP signaling. Eur J Pharmacol 510:209–215

    PubMed  CAS  Google Scholar 

  101. Wegenxer JW, Nawrath H, Wolfsgruber W, Kuhbandner S, Werner C, Hofmann F, Feil R (2002) cGMP-dependent protein kinase I mediates the negative inotropic effect of cGMP in the murine myocardium. Circ Res 90:18–20

    PubMed  CAS  Google Scholar 

  102. Charles CJ, Espiner EA, Richards AM, Nicholls MG, Yandle TG (1995) Biological actions and pharmacokinetics of C-type natriuretic peptide in conscious sheep. Am J Physiol 268:R201–R207

    PubMed  CAS  Google Scholar 

  103. Rose RA, Lomax AE, Giles WR (2003) Inhibition of l-type Ca2+ current by C-type natriuretic peptide in bullfrog atrial myocytes: an NPR-C-mediated effect. Am J Physiol Heart Circ Physiol 285:H2454–H2462

    PubMed  CAS  Google Scholar 

  104. Kaneko T, Shirakami G, Nakao K, Nagata I, Nakagawa O, Hama N, Suga S, Miyamoto S, Kubo H, Hirai O et al (1993) C-type natriuretic peptide (CNP) is the major natriuretic peptide in human cerebrospinal fluid. Brain Res 612:104–109

    PubMed  CAS  Google Scholar 

  105. Imura H, Nakao K, Itoh H (1992) The natriuretic peptide system in the brain: implications in the central control of cardiovascular and neuroendocrine functions. Front Neuroendocrinol 13:217–249

    PubMed  CAS  Google Scholar 

  106. Sabbatini ME, Rodriguez MR, Corbo NS, Vatta MS, Bianciotti LG (2005) C-type natriuretic peptide applied to the brain enhances exocrine pancreatic secretion through a vagal pathway. Eur J Pharmacol 524:67–74

    PubMed  CAS  Google Scholar 

  107. Peng N, Chambless BD, Oparil S, Wyss JM (2003) Alpha2A-adrenergic receptors mediate sympathoinhibitory responses to atrial natriuretic peptide in the mouse anterior hypothalamic nucleus. Hypertension 41:571–575

    PubMed  CAS  Google Scholar 

  108. Thomas CJ, May CN, Sharma AD, Woods RL (2001) ANP, BNP, and CNP enhance bradycardic responses to cardiopulmonary chemoreceptor activation in conscious sheep. Am J Physiol Regul Integr Comp Physiol 280:R282–R288

    PubMed  CAS  Google Scholar 

  109. Beaulieu P, Cardinal R, De Lean A, Lambert C (1996) Direct chronotropic effects of atrial and C-type natriuretic peptides in anaesthetized dogs. Br J Pharmacol 118:1790–1796

    PubMed  CAS  Google Scholar 

  110. Herring N, Zaman JA, Paterson DJ (2001) Natriuretic peptides like NO facilitate cardiac vagal neurotransmission and bradycardia via a cGMP pathway. Am J Physiol Heart Circ Physiol 281:H2318–H2327

    PubMed  CAS  Google Scholar 

  111. Melo LG, Veress AT, Chong CK, Ackermann U, Sonnenberg H (1999) Salt-sensitive hypertension in ANP knockout mice is prevented by AT1 receptor antagonist losartan. Am J Physiol 277:R624–R630

    PubMed  CAS  Google Scholar 

  112. Kishimoto I, Rossi K, Garbers DL (2001) A genetic model provides evidence that the receptor for atrial natriuretic peptide (guanylyl cyclase-A) inhibits cardiac ventricular myocyte hypertrophy. Proc Natl Acad Sci USA 98:2703–2706

    PubMed  CAS  Google Scholar 

  113. Bartels CF, Bukulmez H, Padayatti P, Rhee DK, van Ravenswaaij-Arts C, Pauli RM, Mundlos S, Chitayat D, Shih LY, Al-Gazali LI, Kant S, Cole T, Morton J, Cormier-Daire V, Faivre L, Lees M, Kirk J, Mortier GR, Leroy J, Zabel B, Kim CA, Crow Y, Braverman NE, van den Akker F, Warman ML (2004) Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am J Hum Genet 75:27–34

    PubMed  CAS  Google Scholar 

  114. Ono K, Mannami T, Baba S, Tomoike H, Suga S, Iwai N (2002) A single-nucleotide polymorphism in C-type natriuretic peptide gene may be associated with hypertension. Hypertens Res 25:727–730

    PubMed  CAS  Google Scholar 

  115. Rehemudula D, Nakayama T, Soma M, Takahashi Y, Uwabo J, Sato M, Izumi Y, Kanmatsuse K, Ozawa Y (1999) Structure of the type B human natriuretic peptide receptor gene and association of a novel microsatellite polymorphism with essential hypertension. Circ Res 84:605–610

    PubMed  CAS  Google Scholar 

  116. Rahmutula D, Nakayama T, Soma M, Sato M, Izumi Y, Kanmatsuse K, Ozawa Y (2001) Systematic screening of type B human natriuretic peptide receptor gene polymorphisms and association with essential hypertension. J Hum Hypertens 15:471–474

    PubMed  CAS  Google Scholar 

  117. Rahmutula D, Nakayama T, Soma M, Takahashi Y, Uwabo J, Sato M, Izumi Y, Kanmatsuse K, Ozawa Y (2000) An insertion/deletion polymorphism in intron 18 of the type B human natriuretic peptide receptor gene is not associated with cerebral infarction. Hypertens Res 23:173–176

    PubMed  CAS  Google Scholar 

  118. Rahmutula D, Nakayama T, Soma M, Takahashi Y, Uwabo J, Sato M, Izumi Y, Saito S, Honye J, Kanmatsuse K, Ozawa Y (2000) A C2077T polymorphism of the type B human natriuretic peptide receptor gene is not associated with myocardial infarction. Med Sci Monit 6:1056–1060

    PubMed  CAS  Google Scholar 

  119. Steinhelper ME, Cochrane KL, Field LJ (1990) Hypotension in transgenic mice expressing atrial natriuretic factor fusion genes. Hypertension 16:301–307

    PubMed  CAS  Google Scholar 

  120. Ogawa Y, Itoh H, Tamura N, Suga S, Yoshimasa T, Uehira M, Matsuda S, Shiono S, Nishimoto H, Nakao K (1994) Molecular cloning of the complementary DNA and gene that encode mouse brain natriuretic peptide and generation of transgenic mice that overexpress the brain natriuretic peptide gene. J Clin Invest 93:1911–1921

    Article  PubMed  CAS  Google Scholar 

  121. Suda M, Ogawa Y, Tanaka K, Tamura N, Yasoda A, Takigawa T, Uehira M, Nishimoto H, Itoh H, Saito Y, Shiota K, Nakao K (1998) Skeletal overgrowth in transgenic mice that overexpress brain natriuretic peptide. Proc Natl Acad Sci USA 95:2337–2342

    PubMed  CAS  Google Scholar 

  122. Chusho H, Tamura N, Ogawa Y, Yasoda A, Suda M, Miyazawa T, Nakamura K, Nakao K, Kurihara T, Komatsu Y, Itoh H, Tanaka K, Saito Y, Katsuki M, Nakao K (2001) Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci USA 98:4016–4021

    Google Scholar 

  123. Nakanishi M, Saito Y, Kishimoto I, Harada M, Kuwahara K, Takahashi N, Kawakami R, Nakagawa Y, Tanimoto K, Yasuno S, Usami S, Li Y, Adachi Y, Fukamizu A, Garbers DL, Nakao K (2005) Role of natriuretic peptide receptor guanylyl cyclase-A in myocardial infarction evaluated using genetically engineered mice. Hypertension 46:441–447

    Google Scholar 

  124. Kuhn M, Holtwick R, Baba HA, Perriard JC, Schmitz W, Ehler E (2002) Progressive cardiac hypertrophy and dysfunction in atrial natriuretic peptide receptor (GC-A) deficient mice. Heart 87:368–374

    Google Scholar 

  125. Oliver PM, John SW, Purdy KE, Kim R, Maeda N, Goy MF, Smithies O (1998) Natriuretic peptide receptor 1 expression influences blood pressures of mice in a dose-dependent manner. Proc Natl Acad Sci USA 95:2547–2551

    Google Scholar 

  126. Matsukawa N, Grzesik WJ, Takahashi N, Pandey KN, Pang S, Yamauchi M, Smithies O (1999) The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc Natl Acad Sci USA 96:7403–7408

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Deutsche Forschungsgemeinschaft (BA 1374/14-1). The authors would like to acknowledge the critical review and discussion of this manuscript by Dr. Daniel Schwartz (NHLBI, NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Langenickel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagel-Langenickel, I., Buttgereit, J., Bader, M. et al. Natriuretic peptide receptor B signaling in the cardiovascular system: protection from cardiac hypertrophy. J Mol Med 85, 797–810 (2007). https://doi.org/10.1007/s00109-007-0183-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0183-4

Keywords

Navigation