Skip to main content
Log in

UMP synthase activity expressed in deficient hamster cells by separate transferase and decarboxylase proteins or by linker-deleted bifunctional protein

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Segments of the human UMP synthase cDNA coding for the orotate phosphoribosyl transferase (OPRT) and orotidylate decarboxylase (ODC) domains of the bifunctional protein UMP synthase were produced by polymerase chain reaction techniques and cloned into a eukaryotic expression vector. The separate OPRT and ODC vectors, along with a selectable marker, were cotransfected into UMP synthase-deficient hamster cells (UrdC) that require exogeneous uridine for growth. Transfected UrdC cells surviving selection in media without added uridine were isolated and designated transferase decarboxylase UrdC (TDU). All of the selected colonies contained DNA corresponding to the OPRT and ODC expression vectors. Two cell lines (TDU3 and TDU5) integrated many more copies of the OPRT and ODC vectors into their genomes compared to the other TDU lines. A 28.6-kDa ODC protein band and a 24.4-kDa OPRT band were detected on western blots with UMP synthase-specific polyclonal antiserum. The OPRT activity of the TDU lines was up to 8.7 times the OPRT activity of control CHL cells, and the ODC activity was up to 12.5 times control levels. Both OPRT and ODC activities in the monofunctional proteins were less heat stable than in the bifunctional UMP synthase protein. The monofunctional OPRT protein was less stable than the ODC protein at 45°C. Growth of transfected cells in 6-azauridine resulted in striking increases in activity and temperature stability for the monofunctional ODC protein. A UMP synthase bifunctional protein was constructed with a deletion of the suspected linker region joining the two catalytic domains. The linker-deleted UMP synthase showed no significant change in either OPRT or ODC activity or temperature stability. The increased stability of the bifunctional protein may be a factor in its evolutionary selection in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crawford, I.P., Clarke, M., van Cleeput, M., and Yanofsky, C. (1987).J. Biol. Chem. 262:239–244.

    Google Scholar 

  2. Chen, Z., Dixon, J.E., and Zalkin, H. (1990).Proc. Natl. Acad. Sci. U.S.A. 87:3097–3101.

    Google Scholar 

  3. Grayson, D.R., and Evans, D.R. (1983).J. Biol. Chem. 258:4123–4129.

    Google Scholar 

  4. Mally, M.I., Grayson, D.R., and Evans, D.R. (1981).Proc. Natl. Acad. Sci. U.S.A. 78:6647–6651.

    Google Scholar 

  5. Davidson, J.N., Rumsby, P.C., and Tamaren, J. (1981).J. Biol. Chem. 256:5220–5225.

    Google Scholar 

  6. McClard, R.W., Black, M.J., Livingstone, L.R., and Jones, M.E. (1980).Biochemistry 19:4699–4706.

    Google Scholar 

  7. Suttle, D.P., Bugg, B.Y., Winkler, J.K., and Kanalas, J.J. (1988).Proc. Natl. Acad. Sci. U.S.A. 85:1754–1758.

    Google Scholar 

  8. Christopherson, R.I., Traut, T.W., and Jones, M.E. (1981).Curr. Top. Cell Regul. 18:59–77.

    Google Scholar 

  9. Traut, T.W. (1982).Trends Biol. Sci. 7:255–257.

    Google Scholar 

  10. Jacquet, M., Guilbaud, R., and Garreau, H. (1988).Mol. Gen. Genet. 211:441–445.

    Google Scholar 

  11. Ohmstede, C.A., Langdon, S.D., Chae, C.B., and Jones, M.E. (1986).J. Biol. Chem. 261:4276–4282.

    Google Scholar 

  12. Lin, T., and Stuttle, D.P. (1993).Somat. Cell Mol. Genet. 19:193–202.

    Google Scholar 

  13. Kaufman, R.J., Davies, M.V., Pathak, V.K., and Hershey, J.W.B. (1989).Mol. Cell. Biol. 9:946–958.

    Google Scholar 

  14. Kaufman, R.J. (1990).Methods Enzymol. 185:487–511.

    Google Scholar 

  15. Sanger, F., Nicklen, S., and Coulson, A.R. (1977).Proc. Natl. Acad. Sci. U.S.A. 74:5463–5467.

    Google Scholar 

  16. Hamlin, J.L., and Biedler, J.L. (1981).J. Cell Physiol. 107:101–114.

    Google Scholar 

  17. Aiyar, A., and Leis, J. (1993).BioTechniques 14:366.

    Google Scholar 

  18. Patterson, D. (1980).Somat. Cell. Gen. 6:101–114.

    Google Scholar 

  19. Kanalas, J.J., Hutton, J.J., and Suttle, D.P. (1985).Somat. Cell Mol. Genet. 11:359–369.

    Google Scholar 

  20. Prabhakararao, K., and Jones, M.E. (1975).Anal. Biochem. 69:451–457.

    Google Scholar 

  21. Jones, M.E., Kavipurapu, P.R., and Traut, T.W. (1978).Methods Enzymol. 51:155–167.

    Google Scholar 

  22. Blin, N., and Stafford, D.W. (1976).Nucleic Acids Res. 3:2303.

    Google Scholar 

  23. Floyd, E.E., and Jones, M.E. (1985).J. Biol. Chem. 260:9443–9451.

    Google Scholar 

  24. Qumsiyeh, M.B., and Suttle, D.P. (1990).J. Hered. 81:111–116.

    Google Scholar 

  25. Kavipurapu, P.R., and Jones, M.E. (1976).J. Biol. Chem. 251:5589–5599.

    Google Scholar 

  26. Perry, M.E., and Jones, M.E. (1989).J. Biol. Chem. 264:15522–15528.

    Google Scholar 

  27. Langdon, S.D., and Jones, M.E. (1987).J. Biol. Chem. 262:13359–13365.

    Google Scholar 

  28. Grobner, W., and Kelley, W.N. (1975).Biochem. Pharmacol. 24:379–384.

    Google Scholar 

  29. Tax, W.J.M., Veerkamp, J.H., Trijbels, F.J.M., and Schnetlen, E.D.A.M. (1976).Biochem. Pharmacol. 25:2025–2032.

    Google Scholar 

  30. Krooth, R.S., Lam, G.F., and Chen Kiang, S.Y. (1974).Cell 3:55–57.

    Google Scholar 

  31. Pinsky, L., and Krooth, R.S. (1967).Proc. Natl. Acad. Sci. U.S.A. 57:925–931.

    Google Scholar 

  32. Pinsky, L., and Krooth, R.S. (1967).Proc. Natl. Acad. Sci. U.S.A. 57:1267–1274.

    Google Scholar 

  33. Davidson, J.N., Chen, K.C., Jamison, R.S., Musmanno, L.A., and Kern, C.B. (1992).Curr. Opin. Genet. Dev. 2:902–906.

    Google Scholar 

  34. Maley, J.A., and Davidson, J.N. (1988).Mol. Gen. Genet. 213:278–284.

    Google Scholar 

  35. Musmanno, L.A., Maley, J.A., and Davidson, J.N. (1991).Gene. 99:211–216.

    Google Scholar 

  36. Zimmermann, B.H., and Evans, D.R. (1993).Biochemistry. 32:1519–1527.

    Google Scholar 

  37. Musmanno, L.A., Jamison, R.S., Barnett, R.S., Buford, E., and Davidson, J.N. (1992).Somat. Cell Mol. Genet. 18:309–318.

    Google Scholar 

  38. McClard, R.W., and Jones, M.E. (1982).Biochim. Biophys. Acta 707:193–198.

    Google Scholar 

  39. Traut, T.W., and Jones, M.E. (1979).J. Biol. Chem. 254:1143–1150.

    Google Scholar 

  40. Suttle, D.P., and Stark, G.R. (1979).J. Biol. Chem. 254:4602–4607.

    Google Scholar 

  41. Traut, T.W., Payne, R.C., and Jones, M.E. (1980).Biochemistry 19:6062–6068.

    Google Scholar 

  42. Guy, H.I., and Evans, D.R. (1994).J. Biol. Chem. 269:23808–23816.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, T., Parker Suttle, D. UMP synthase activity expressed in deficient hamster cells by separate transferase and decarboxylase proteins or by linker-deleted bifunctional protein. Somat Cell Mol Genet 21, 161–175 (1995). https://doi.org/10.1007/BF02254768

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02254768

Keywords

Navigation