Skip to main content
Log in

Whole-grain evaporation for 207Pb/206Pb-age-investigations on single zircons using a double-filament thermal ion source

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A technique has been developed and tested to analyse 207Pb/206Pb apparent ages by thermal evaporation of radiogenic lead directly from untreated whole zircon grains (≤0.3 mm). The evaporation analyses are performed in the double-filament arrangement of a thermal ion mass spectrometer (ThIMS). The method is a powerful tool to distinguish between different lead components occurring in the same grain because differing activation energies of the competing lead components cause their sequential evaporation from the zircons. The evaporation of test samples results in 207Pb/206Pb apparent ages in good agreement with U/Pb ages known from literature: single zircons from a granite of the ‘Marble Mountains’/California yield an age of crystallization of 1,410±30 Ma; ‘Ceylon’ zircons from heavy-mineral bearing gravels yield 560± 40 Ma as age of crystallization of the pegmatitic gravel sources; individuals from a heterogeneous zircon population of a diatexite from the Southern Schwarzwald/SW-Germany indicate metamorphic zircon formation around 500 Ma and the existence of Middle-Proterozoic relics (1.95±0.05 Ga).

The evaporation analyses revealed closed-system U/Pb evolution of the crystalline domains of all investigated zircons irrespective of discordancy-trends documented by U/Pb analyses on related zircon concentrates. Therefore the majority of ‘discordia’-lines derived from U/Pb isotope distributions of zircon samples are supposed to be due to phase mixing. Lead components from the crystalline domains are ‘concordant’ end members of the mixing arrays. Open-system behaviour and U/Pb fractionation should be attributed only to phases with low Pb activation energies eg. metamict zircon domains or intergrown non-zircon minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akishin PA, Nikitin OT, Panchenkov GM (1957) A new effective ion emitter for the isotopic lead analysis. Geochem Int, pp 500–505

  • Allegre CJ, Albarede F, Grünenfelder M, Köppel V (1974) 238U/ 206Pb-235U/207Pb-232Th/208Pb zircon geochronology in Alpine and non-Alpine environment. Contrib Mineral Petrol 43:163–194

    Google Scholar 

  • Cameron AE, Smith DE, Walker RL (1969) Mass spectrometry of nanogram size samples of lead. Anal Chem 41:525–526

    Google Scholar 

  • Catanzaro EJ, Kulp JL (1964) Discordant zircons from the Little Belt (Montana), Beartooth (Montana) and Santa Catalina Mountains (Arizona). Geochim Cosmochim Acta 28:87–124

    Google Scholar 

  • Chukhonin AP (1978) A mass spectrometric study of the forms taken by lead in zircon. Geochim Int 15:186–189

    Google Scholar 

  • Compston W, Williams IS, Meyer C (1984) U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res 89 Suppl:B525-B534

    Google Scholar 

  • Coppens R, Durand G, Roubault M (1965) Etude de l'age des zircons par rapport des plombs 207 et 206; application a l'etude du granite de la Clarte-Ploumanac'h (Bretagne, France). Int Coll Geochron Nancy, France, pp 1–9

  • v. Drach V, Lippolt HJ (1975) Variscische Strontium-Isotopen-Homogenisierung in Gesteinen des Südschwarzwaldes. Fortschr Mineral 53:15

    Google Scholar 

  • Gentry RV (1984) Lead retention in Zircons. Science 223:835

    Google Scholar 

  • Gentry RV, Sworski TJ, McKown HS, Smith DH, Eby RE, Christie WH (1982) Differential lead retention in zircons: Implications for nuclear waste containment. Science 216:296–297

    Google Scholar 

  • Goldich SS, Mudrey MG (1972) Dilatancy model for discordant U-Pb zircon ages. Contrib Rec Geochem Anal Chem (Vinogradov volume), Nauka Publ Office Moscow, pp 415–418

  • Gottfried D, Senftle FE, Waring CL (1956) Age determination of zircon crystals from Ceylon. Am Mineralogist 41:157–161

    Google Scholar 

  • Hinthorne JR, Anderson CA, Conrad RL, Lovering JF (1979) Single-grain 207Pb/206Pb and U/Pb age determinations with a 10 μm spatial resolution using the ion microprobe mass analyser (IMMA). Chem Geol 25:271–303

    Google Scholar 

  • Hofmann A, Köhler H (1973) Whole rock Rb-Sr ages of anatectic gneisses from the Schwarzwald, SW-Germany. N Jahrb Mineral Abh 119:163–187

    Google Scholar 

  • Holland HD, Gottfried D (1955) The effect of nuclear radiation on the structure of zircon. Acta Cryst 8:291–300

    Google Scholar 

  • Kober B, Lippolt HJ (1985a) Pre-Hercynian mantle lead transfer to basement rocks as indicated by lead isotopes of the Schwarzwald crystalline, SW-Germany. I. The lead isotope distribution and its correlation. Contrib Mineral Petrol 90:162–171

    Google Scholar 

  • Kober B, Lippolt HJ (1985b) Pre-Hercynian mantle lead transfer to basement rocks as indicated by lead isotopes of the Schwarzwald crystalline, SW-Germany. II. Lead isotope distribution of the European Hercynides. Contrib Mineral Petrol 90:172–178

    Google Scholar 

  • Kosztolanyi C (1965) Nouvelle methode d'analyse isotopique des zircons a l'etat naturel apres attaque directe sur le filament. Compt Rend Acad Sci 261:5849–5851

    Google Scholar 

  • Krogh TE (1973) A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim Cosmochim Acta 37:485–494

    Google Scholar 

  • Krogh TE (1982) Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using air abrasion technique. Geochim Cosmochim Acta 46:637–649

    Google Scholar 

  • Lancelot J, Vitrac A, Allegre CJ (1976) Uranium and lead isotopic dating with grain by grain zircon analysis: a study of complex geological history with a single rock. Earth Planet Sci Lett 29:357–366

    Google Scholar 

  • Lipova IM, Kuznetsova GA, Makarov ES (1965) An investigation of the metamict state in zircons and cyrtolites. Geochem Int 2:513–525

    Google Scholar 

  • Ludwig KR, Zartman RE, Goldich SS (1984) Lead retention in Zircons. Science 223:835

    Google Scholar 

  • Mamedov SA (1970) Migration of radiogenic products in zircon. Geochem Int 7:203

    Google Scholar 

  • Oberli F, Kagami H, Meier M, Steiger RH (1985) Correlated SmNd and U-Pb systematics of total-rock, zircon and other accessory minerals. Terra Cognita 5:324

    Google Scholar 

  • Oosthuyzen EJ, Burger AJ (1973) The suitability of apatite as an age indicator by the uranium-lead method. Earth Planet Sci Lett 18:29–36

    Google Scholar 

  • Pidgeon RT, O'Neil JR, Silver LT (1966) Uranium and lead isotopic stability in a metamict zircon under experimental hydrothermal conditions. Science 154:1538–1540

    Google Scholar 

  • Pidgeon RT, O'Neil JR, Silver LT (1972) Observations on the crystallinity and the U-Pb isotopic system of a metamict Ceylon zircon under experimental hydrothermal conditions (abstract). 2nd Europ Coll Geochron Cosmochron Isotop Geol, Heidelberg, 118 p

  • Pin C, Lancelot J (1982) U-Pb dating of an early Paleozoic bimodal magmatism in the French Massif Central and of its further metamorphic evolution. Contrib Mineral Petrol 79:1–22

    Google Scholar 

  • Shestakov GI (1972) Diffusion of lead in monazite, zircon, sphene and apatite. Geochem Int 9:801–807

    Google Scholar 

  • Shukolyukov YA (1964) Interpretation of discordant ages calculated from the isotopic ratios 206Pb/238U and 207Pb/235U. Geochem Int 1:843–852

    Google Scholar 

  • Silver LT (1963) The relation between radioactivity and discordance in zircons. Nucl Sci Ser 38, Nat Acad Sci Publ 1075, Washington, pp 34–42

  • Sommerauer J (1976) Die chemisch-physikalische Stabilität natürlicher Zirkone und ihr U-(Th)-Pb System. Unpubl thesis, ETH Zürich, No. 5755, 151p

  • Steiger RH, Bär MT, Büsch W (1973) The zircon age of an anatectic rock in the Central Schwarzwald. Fortschr Mineral 50:131–132

    Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: Convention on the use of decay constants in geo-and cosmochronology. Earth Planet Sci Lett 36:359–362

    Google Scholar 

  • Steiger RH, Wasserburg GJ (1966) Systematics in the Pb208-Th232, Pb207-U235, Pb206-U238 systems. J Geophys Res 71:6065–6090

    Google Scholar 

  • Stern TW, Goldich SS, Newell MF (1966) Effects of weathering on the U-Pb ages of zircon from the Morton gneiss, Minnesota. Earth Planet Sci Lett 1:369–371

    Google Scholar 

  • Sunin LV, Malyshev VI (1983) The thermoisochron method of determining Pb-Pb ages. Geochem Int 20:34–45

    Google Scholar 

  • Tatsumoto M, Unruh DM, Naeser CW, Gramlich JW (1973) Grain by grain analysis applied to a U-Pb systematics study of zircon from Amitsoq Gneiss, Greenland (abstract). 3rd Europ Coll Geochron Cosmochron Isotop Geol, Oxford, United Kingdom

  • Tera F, Wasserburg GJ (1975) Precise isotopic analysis of lead in picomole and subpicomole quantities. Anal Chem 47:2214–2220

    Google Scholar 

  • Tilton GR (1960) Volume diffusion as a mechanism for discordant lead ages. J Geophys Res 65:2933–2945

    Google Scholar 

  • Tilton GR, Aldrich LT (1955) The reliability of zircon as age indicator. Trans Am Geophys Union 36:531–536

    Google Scholar 

  • Todt W, Büsch W (1981) U-Pb investigations on zircons from pre-Variscan gneisses. I. A study from the Schwarzwald, West-Germany. Geochim Cosmochim Acta 45:1789–1801

    Google Scholar 

  • Vance ER, Anderson BW (1972) Study of metamict Ceylon zircons. Mineral Mag 38:605–613

    Google Scholar 

  • Wetherill GW (1956) Discordant uranium-lead ages. Trans Am Geophys Union 37:320–326

    Google Scholar 

  • Williams IS, Compston W, Black LP, Ireland TR, Foster JJ (1984) Unsupported radiogenic lead in zircon: a cause of anomalously high Pb-Pb, U-Pb and Th-Pb ages. Contrib Mineral Petrol 88:322–327

    Google Scholar 

  • Zartman RE (1982) Some observations on discordance in the zircon chronometer (abstract). 5th Int Coll Geochron Cosmochron Isotop Geol Nikko, Japan, pp 409–410

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kober, B. Whole-grain evaporation for 207Pb/206Pb-age-investigations on single zircons using a double-filament thermal ion source. Contr. Mineral. and Petrol. 93, 482–490 (1986). https://doi.org/10.1007/BF00371718

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371718

Keywords

Navigation