Skip to main content
Log in

Accidental SUSY: enhanced bulk supersymmetry from brane back-reaction

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We compute how bulk loops renormalize both bulk and brane effective interactions for codimension-two branes in 6D gauged chiral supergravity, as functions of the brane tension and brane-localized flux. We do so by explicitly integrating out hyper- and gauge-multiplets in 6D gauged chiral supergravity compactified to 4D on a flux-stabilized 2D rugby-ball geometry, specializing the results of a companion paper, arXiv:1210.3753, to the supersymmetric case. While the brane back-reaction generically breaks supersymmetry, we show that the bulk supersymmetry can be preserved if the amount of brane- localized flux is related in a specific BPS-like way to the brane tension, and verify that the loop corrections to the brane curvature vanish in this special case. In these systems it is the brane-bulk couplings that fix the size of the extra dimensions, and we show that in some circumstances the bulk geometry dynamically adjusts to ensure the supersymmetric BPS-like condition is automatically satisfied. We investigate the robustness of this residual supersymmetry to loops of non-supersymmetric matter on the branes, and show that supersymmetry-breaking effects can enter only through effective brane-bulk interactions involving at least two derivatives. We comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Volkov and V. Akulov, Is the neutrino a goldstone particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].

    ADS  Google Scholar 

  2. V. Akulov and D. Volkov, Goldstone fields with spin 1/2, Theor. Math. Phys. 18 (1974) 28 [Teor. Mat. Fiz. 18 (1974) 39] [INSPIRE].

    MathSciNet  Google Scholar 

  3. B. Zumino, Nonlinear realization of supersymmetry in de Sitter space, Nucl. Phys. B 127 (1977) 189 [INSPIRE].

    ADS  Google Scholar 

  4. S. Samuel and J. Wess, A superfield formulation of the nonlinear realization of supersymmetry and its coupling to supergravity, Nucl. Phys. B 221 (1983) 153 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton, U.S.A. (1992).

    Google Scholar 

  6. J. Polchinski, TASI lectures on D-branes, hep-th/9611050 [INSPIRE].

  7. J. Hughes, J. Liu and J. Polchinski, Supermembranes, Phys. Lett. B 180 (1986) 370 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. J. Hughes and J. Polchinski, Partially broken global supersymmetry and the superstring, Nucl. Phys. B 278 (1986) 147 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. E. Witten, Dynamical breaking of supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].

    ADS  Google Scholar 

  10. S. Cecotti, L. Girardello and M. Porrati, Two into one wont go, Phys. Lett. B 145 (1984) 61 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. J. Bagger and J. Wess, Partial breaking of extended supersymmetry, Phys. Lett. B 138 (1984) 105 [INSPIRE].

    ADS  Google Scholar 

  12. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

    ADS  Google Scholar 

  14. D.E. Kaplan, G.D. Kribs and M. Schmaltz, Supersymmetry breaking through transparent extra dimensions, Phys. Rev. D 62 (2000) 035010 [hep-ph/9911293] [INSPIRE].

    ADS  Google Scholar 

  15. Z. Chacko, M.A. Luty, A.E. Nelson and E. Ponton, Gaugino mediated supersymmetry breaking, JHEP 01 (2000) 003 [hep-ph/9911323] [INSPIRE].

    ADS  Google Scholar 

  16. K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. S. Kachru, L. McAllister and R. Sundrum, Sequestering in string theory, JHEP 10 (2007) 013 [hep-th/0703105] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. C.P. Burgess, R.C. Myers and F. Quevedo, A naturally small cosmological constant on the brane?, Phys. Lett. B 495 (2000) 384 [hep-th/9911164] [INSPIRE].

    ADS  Google Scholar 

  19. E. Dudas and J. Mourad, Consistent gravitino couplings in nonsupersymmetric strings, Phys. Lett. B 514 (2001) 173 [hep-th/0012071] [INSPIRE].

    ADS  Google Scholar 

  20. D. Marti and A. Pomarol, Supersymmetric theories with compact extra dimensions in N = 1 superfields, Phys. Rev. D 64 (2001) 105025 [hep-th/0106256] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. D.E. Kaplan and N. Weiner, Radion mediated supersymmetry breaking as a Scherk-Schwarz theory, hep-ph/0108001 [INSPIRE].

  22. J. Bagger, F. Feruglio and F. Zwirner, Brane induced supersymmetry breaking, JHEP 02 (2002) 010 [hep-th/0108010] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. I. Antoniadis, K. Benakli and A. Laugier, D-brane models with nonlinear supersymmetry, Nucl. Phys. B 631 (2002) 3 [hep-th/0111209] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. K. Meissner, H.P. Nilles and M. Olechowski, Brane induced supersymmetry breakdown and restoration, Acta Phys. Polon. B 33 (2002) 2435 [hep-th/0205166] [INSPIRE].

    ADS  Google Scholar 

  25. C.P. Burgess, E. Filotas, M. Klein and F. Quevedo, Low-energy brane world effective actions and partial supersymmetry breaking, JHEP 10 (2003) 041 [hep-th/0209190] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. C.P. Burgess et al., Warped supersymmetry breaking, JHEP 04 (2008) 053 [hep-th/0610255] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. S. Weinberg, Dynamical approach to current algebra, Phys. Rev. Lett. 18 (1967) 188 [INSPIRE].

    ADS  Google Scholar 

  28. S. Weinberg, Nonlinear realizations of chiral symmetry, Phys. Rev. 166 (1968) 1568 [INSPIRE].

    ADS  Google Scholar 

  29. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].

    ADS  Google Scholar 

  30. M. Bando, T. Kugo and K. Yamawaki, Nonlinear realization and hidden local symmetries, Phys. Rept. 164 (1988) 217 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. C.P. Burgess, Goldstone and pseudoGoldstone bosons in nuclear, particle and condensed matter physics, Phys. Rept. 330 (2000) 193 [hep-th/9808176] [INSPIRE].

    ADS  Google Scholar 

  32. C.P. Burgess, J. Matias and F. Quevedo, MSLED: a Minimal Supersymmetric Large Extra Dimensions scenario, Nucl. Phys. B 706 (2005) 71 [hep-ph/0404135] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. C. Bouchart, A. Knochel and G. Moreau, Discriminating 4D supersymmetry from its 5D warped version, Phys. Rev. D 84 (2011) 015016 [arXiv:1101.0634] [INSPIRE].

    ADS  Google Scholar 

  34. Y. Aghababaie, C.P. Burgess, S.L. Parameswaran and F. Quevedo, Towards a naturally small cosmological constant from branes in 6D supergravity, Nucl. Phys. B 680 (2004) 389 [hep-th/0304256] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. D. Atwood et al., Supersymmetric large extra dimensions are small and/or numerous, Phys. Rev. D 63 (2001) 025007 [hep-ph/0007178] [INSPIRE].

    ADS  Google Scholar 

  36. J.L. Hewett and D. Sadri, Supersymmetric extra dimensions: gravitino effects in selectron pair production, Phys. Rev. D 69 (2004) 015001 [hep-ph/0204063] [INSPIRE].

    ADS  Google Scholar 

  37. G. Azuelos, P. Beauchemin and C.P. Burgess, Phenomenological constraints on extra dimensional scalars, J. Phys. G 31 (2005) 1 [hep-ph/0401125] [INSPIRE].

    ADS  Google Scholar 

  38. P. Beauchemin, G. Azuelos and C.P. Burgess, Dimensionless coupling of bulk scalars at the LHC, J. Phys. G 30 (2004) N17 [hep-ph/0407196] [INSPIRE].

    Google Scholar 

  39. M. Williams, C.P. Burgess, A. Maharana and F. Quevedo, New constraints (and motivations) for abelian gauge bosons in the MeV-TeV mass range, JHEP 08 (2011) 106 [arXiv:1103.4556] [INSPIRE].

    ADS  Google Scholar 

  40. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

    ADS  Google Scholar 

  41. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].

    ADS  Google Scholar 

  42. G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hep-ph/9811291] [INSPIRE].

    ADS  Google Scholar 

  43. T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  44. J.L. Hewett, Indirect collider signals for extra dimensions, Phys. Rev. Lett. 82 (1999) 4765 [hep-ph/9811356] [INSPIRE].

    ADS  Google Scholar 

  45. G.F. Giudice and A. Strumia, Constraints on extra dimensional theories from virtual graviton exchange, Nucl. Phys. B 663 (2003) 377 [hep-ph/0301232] [INSPIRE].

    ADS  Google Scholar 

  46. H. Nishino and E. Sezgin, Matter and gauge couplings of N = 2 supergravity in six-dimensions, Phys. Lett. B 144 (1984) 187 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  47. A. Salam and E. Sezgin, Chiral compactification on minkowski × S 2 of N = 2 Einstein-Maxwell supergravity in six-dimensions, Phys. Lett. B 147 (1984) 47 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. Y. Aghababaie, C.P. Burgess, S. Parameswaran and F. Quevedo, SUSY breaking and moduli stabilization from fluxes in gauged 6D supergravity, JHEP 03 (2003) 032 [hep-th/0212091] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  49. G. Gibbons, R. Güven and C. Pope, 3-branes and uniqueness of the Salam-Sezgin vacuum, Phys. Lett. B 595 (2004) 498 [hep-th/0307238] [INSPIRE].

    ADS  Google Scholar 

  50. Y. Aghababaie, C.P. Burgess, J.M. Cline, H. Firouzjahi, S. Parameswaran, et al., Warped brane worlds in six-dimensional supergravity, JHEP 09 (2003) 037 [hep-th/0308064] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. J.-W. Chen, M.A. Luty and E. Ponton, A critical cosmological constant from millimeter extra dimensions, JHEP 09 (2000) 012 [hep-th/0003067] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  52. F. Leblond, R.C. Myers and D.J. Winters, Consistency conditions for brane worlds in arbitrary dimensions, JHEP 07 (2001) 031 [hep-th/0106140] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  53. S.M. Carroll and M.M. Guica, Sidestepping the cosmological constant with football shaped extra dimensions, hep-th/0302067 [INSPIRE].

  54. I. Navarro, Codimension two compactifications and the cosmological constant problem, JCAP 09 (2003) 004 [hep-th/0302129] [INSPIRE].

    ADS  Google Scholar 

  55. E. Papantonopoulos and A. Papazoglou, Brane-bulk matter relations for a purely conical codimension-2 brane world, JCAP 07 (2005) 004 [hep-th/0501112] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  56. M. Williams, C.P. Burgess, L. van Nierop and A. Salvio, Running with rugby balls: bulk renormalization of codimension-2 branes, JHEP 01 (2013) 102 [arXiv:1210.3753] [INSPIRE].

    ADS  Google Scholar 

  57. C.P. Burgess, D. Hoover and G. Tasinato, Technical naturalness on a codimension-2 brane, JHEP 06 (2009) 014 [arXiv:0903.0402] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  58. C.P. Burgess and L. van Nierop, Bulk axions, brane back-reaction and fluxes, JHEP 02 (2011) 094 [arXiv:1012.2638] [INSPIRE].

    ADS  Google Scholar 

  59. C.P. Burgess and L. van Nierop, Large dimensions and small curvatures from supersymmetric brane back-reaction, JHEP 04 (2011) 078 [arXiv:1101.0152] [INSPIRE].

    ADS  Google Scholar 

  60. M. Cvetič, G.W. Gibbons and C.N. Pope, A string and M-theory origin for the Salam-Sezgin model, Nucl. Phys. B 677 (2004) 164 [hep-th/0308026] [INSPIRE].

    ADS  Google Scholar 

  61. T.G. Pugh, E. Sezgin and K.S. Stelle, D = 7/D = 6 heterotic supergravity with gauged R-symmetry, JHEP 02 (2011) 115 [arXiv:1008.0726] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  62. D. Hoover and C.P. Burgess, Ultraviolet sensitivity in higher dimensions, JHEP 01 (2006) 058 [hep-th/0507293] [INSPIRE].

    ADS  Google Scholar 

  63. C.P. Burgess and D. Hoover, UV sensitivity in supersymmetric large extra dimensions: The Ricci-flat case, Nucl. Phys. B 772 (2007) 175 [hep-th/0504004] [INSPIRE].

    ADS  Google Scholar 

  64. N. Marcus and J.H. Schwarz, Field theories that have no manifestly Lorentz invariant formulation, Phys. Lett. B 115 (1982) 111 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  65. B. de Wit and J. Louis, Supersymmetry and dualities in various dimensions, hep-th/9801132 [INSPIRE].

  66. M.B. Green and J.H. Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett. B 149 (1984) 117 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  67. L. Álvarez-Gaumé and E. Witten, Gravitational anomalies, Nucl. Phys. B 234 (1984) 269 [INSPIRE].

    ADS  Google Scholar 

  68. S. Randjbar-Daemi, A. Salam, E. Sezgin and J.A. Strathdee, An anomaly free model in six-dimensions, Phys. Lett. B 151 (1985) 351 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  69. M.B. Green, J.H. Schwarz and P.C. West, Anomaly free chiral theories in six-dimensions, Nucl. Phys. B 254 (1985) 327 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  70. J. Erler, Anomaly cancellation in six-dimensions, J. Math. Phys. 35 (1994) 1819 [hep-th/9304104] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  71. S. Weinberg, Gravitation and cosmology, Wiley, U.S.A. (1973)

    Google Scholar 

  72. C.W. Misner, J.A. Wheeler and K.S. Thorne, Gravitation, W.H. Freeman & Company, U.S.A. (1973).

    Google Scholar 

  73. S. Randjbar-Daemi and E. Sezgin, Scalar potential and dyonic strings in 6D gauged supergravity, Nucl. Phys. B 692 (2004) 346 [hep-th/0402217] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  74. J.H. Schwarz, Anomaly-free supersymmetric models in six-dimensions, Phys. Lett. B 371 (1996) 223 [hep-th/9512053] [INSPIRE].

    ADS  Google Scholar 

  75. M. Berkooz et al., Anomalies, dualities and topology of D = 6 N = 1 superstring vacua, Nucl. Phys. B 475 (1996) 115 [hep-th/9605184] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  76. N. Seiberg, Nontrivial fixed points of the renormalization group in six-dimensions, Phys. Lett. B 390 (1997) 169 [hep-th/9609161] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  77. A. Sagnotti, A note on the Green-Schwarz mechanism in open string theories, Phys. Lett. B 294 (1992) 196 [hep-th/9210127] [INSPIRE].

    ADS  Google Scholar 

  78. M. Duff, R. Minasian and E. Witten, Evidence for heterotic/heterotic duality, Nucl. Phys. B 465 (1996) 413 [hep-th/9601036] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  79. G. Aldazabal, A. Font, L.E. Ibáñez and F. Quevedo, Heterotic/heterotic duality in D = 6, D = 4, Phys. Lett. B 380 (1996) 33[hep-th/9602097] [INSPIRE].

    ADS  Google Scholar 

  80. N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  81. P.G.O. Freund and M.A. Rubin, Dynamics of dimensional reduction, Phys. Lett. B 97 (1980) 233 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  82. C.P. Burgess, D. Hoover and G. Tasinato, UV caps and modulus stabilization for 6D gauged chiral supergravity, JHEP 09 (2007) 124 [arXiv:0705.3212] [INSPIRE].

    ADS  Google Scholar 

  83. C.P. Burgess, D. Hoover, C. de Rham and G. Tasinato, Effective field theories and matching for codimension-2 branes, JHEP 03 (2009) 124 [arXiv:0812.3820] [INSPIRE].

    ADS  Google Scholar 

  84. A. Bayntun, C.P. Burgess and L. van Nierop, Codimension-2 brane-bulk matching: examples from six and ten dimensions, New J. Phys. 12 (2010) 075015 [arXiv:0912.3039] [INSPIRE].

    ADS  Google Scholar 

  85. A. Vilenkin, Gravitational field of vacuum domain walls and strings, Phys. Rev. D 23 (1981) 852 [INSPIRE].

    ADS  Google Scholar 

  86. R. Gregory, Gravitational stability of local strings, Phys. Rev. Lett. 59 (1987) 740 [INSPIRE].

    ADS  Google Scholar 

  87. A.G. Cohen and D.B. Kaplan, The exact metric about global cosmic strings, Phys. Lett. B 215 (1988) 67 [INSPIRE].

    ADS  Google Scholar 

  88. A. Vilenkin and P. Shellard, Cosmic strings and other topological defects, Cambridge University Press, Cambridge U.K. (1994).

    MATH  Google Scholar 

  89. R. Gregory and C. Santos, Cosmic strings in dilaton gravity, Phys. Rev. D 56 (1997) 1194 [gr-qc/9701014] [INSPIRE].

    ADS  Google Scholar 

  90. C.P. Burgess, F. Quevedo, G. Tasinato and I. Zavala, General axisymmetric solutions and self-tuning in 6D chiral gauged supergravity, JHEP 11 (2004) 069 [hep-th/0408109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  91. A. Falkowski, H.M. Lee and C. Lüdeling, Gravity mediated supersymmetry breaking in six dimensions, JHEP 10 (2005) 090 [hep-th/0504091] [INSPIRE].

    ADS  Google Scholar 

  92. H.M. Lee and A. Papazoglou, Supersymmetric codimension-two branes in six-dimensional gauged supergravity, JHEP 01 (2008) 008 [arXiv:0710.4319] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  93. S.L. Parameswaran and J. Schmidt, Coupling brane fields to bulk supergravity, Phys. Lett. B 696 (2011) 131 [arXiv:1008.3832] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  94. C.P. Burgess, Quantum gravity in everyday life: general relativity as an effective field theory, Living Rev. Rel. 7 (2004) 5 [gr-qc/0311082] [INSPIRE].

    Google Scholar 

  95. J.F. Donoghue, The effective field theory treatment of quantum gravity, AIP Conf. Proc. 1483 (2012) 73 [arXiv:1209.3511] [INSPIRE].

    ADS  Google Scholar 

  96. J.F. Donoghue, Introduction to the effective field theory description of gravity, gr-qc/9512024 [INSPIRE].

  97. J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  98. B.S. De Witt, Dynamical theory of groups and fields, in Relativity, groups and topology, B.S. De Witt and C. De Witt eds., Gordon and Breach, New York U.S.A. (1965).

    Google Scholar 

  99. P.B. Gilkey, The spectral geometry of a riemannian manifold, J. Diff. Geom. 10 (1975) 601 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  100. S.M. Christensen, Regularization, renormalization and covariant geodesic point separation, Phys. Rev. D 17 (1978) 946 [INSPIRE].

    ADS  Google Scholar 

  101. S.M. Christensen and M.J. Duff, Axial and conformal anomalies for arbitrary spin in gravity and supergravity, Phys. Lett. B 76 (1978) 571 [INSPIRE].

    ADS  Google Scholar 

  102. S.M. Christensen and M.J. Duff, New gravitational index theorems and supertheorems, Nucl. Phys. B 154 (1979) 301 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  103. S.M. Christensen, M.J. Duff, G.W. Gibbons and M. Roček, Vanishing one loop β-function in gauged N > 4 supergravity, Phys. Rev. Lett. 45 (1980) 161 [INSPIRE].

    ADS  Google Scholar 

  104. A.O. Barvinsky and G.A. Vilkovisky, The generalized Schwinger-Dewitt technique in gauge theories and quantum gravity, Phys. Rept. 119 (1985) 1 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  105. D.M. McAvity and H. Osborn, A DeWitt expansion of the heat kernel for manifolds with a boundary, Class. Quant. Grav. 8 (1991) 603 [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  106. D.V. Vassilevich, Heat kernel expansion: Users manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  107. C.P. Burgess, Supersymmetric large extra dimensions and the cosmological constant: an update, Annals Phys. 313 (2004) 283 [hep-th/0402200] [INSPIRE].

    MathSciNet  Google Scholar 

  108. C.P. Burgess, Towards a natural theory of dark energy: supersymmetric large extra dimensions, AIP Conf. Proc. 743 (2005) 417 [hep-th/0411140] [INSPIRE].

    ADS  Google Scholar 

  109. C.P. Burgess and L. van Nierop, Technically natural cosmological constant from supersymmetric 6D brane backreaction, arXiv:1108.0345 [INSPIRE].

  110. C.P. Burgess, Introduction to effective field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 329 [hep-th/0701053] [INSPIRE].

    ADS  Google Scholar 

  111. A. Albrecht, C.P. Burgess, F. Ravndal and C. Skordis, Exponentially large extra dimensions, Phys. Rev. D 65 (2002) 123506 [hep-th/0105261] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  112. M. Peloso and E. Poppitz, Quintessence from shape moduli, Phys. Rev. D 68 (2003) 125009 [hep-ph/0307379] [INSPIRE].

    ADS  Google Scholar 

  113. D.M. Ghilencea, D. Hoover, C.P. Burgess and F. Quevedo, Casimir energies for 6D supergravities compactified on T (2)/Z(N) with Wilson lines, JHEP 09 (2005) 050 [hep-th/0506164] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  114. E. Elizalde, M. Minamitsuji and W. Naylor, Casimir effect in rugby-ball type flux compactifications, Phys. Rev. D 75 (2007) 064032 [hep-th/0702098] [INSPIRE].

    ADS  Google Scholar 

  115. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].

    ADS  Google Scholar 

  116. K. Lanczos, Ein vereinfachendes Koordinatensystem für die Einsteinschen Gravitationsgleichungen, Phys. Z. 23 (1922) 239 [Ann. Phys. 74 (1924) 518].

    Google Scholar 

  117. C.W. Misner and D.H. Sharp, Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys. Rev. 136 (1964) B571.

    MathSciNet  ADS  Google Scholar 

  118. W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuov. Cim. 44B (1966) 1 [Erratum ibid. 48B (1967) 463].

    ADS  Google Scholar 

  119. R. Kantowski and K.A. Milton, Scalar casimir energies in M 4 × S N for even N, Phys. Rev. D 35 (1987) 549 [INSPIRE].

    ADS  Google Scholar 

  120. R. Kantowski and K. Milton, Casimir energies in M 4 × S N for even N. Greens function and Zeta function techniques, Phys. Rev. D 36 (1987) 3712 [INSPIRE].

    ADS  Google Scholar 

  121. D. Birmingham, R. Kantowski and K.A. Milton, Scalar and spinor Casimir energies in even dimensional Kaluza-Klein spaces of the form \({M^4}\times {S^{{{N_1}}}}\times {S^{{{N_2}}}}\times \cdot \cdot \cdot\), Phys. Rev. D 38 (1988) 1809 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  122. P. Candelas and S. Weinberg, Calculation of gauge couplings and compact circumferences from selfconsistent dimensional reduction, Nucl. Phys. B 237 (1984) 397 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Williams.

Additional information

ArXiv ePrint: 1210.5405

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgess, C.P., van Nierop, L., Parameswaran, S. et al. Accidental SUSY: enhanced bulk supersymmetry from brane back-reaction. J. High Energ. Phys. 2013, 120 (2013). https://doi.org/10.1007/JHEP02(2013)120

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2013)120

Keywords

Navigation