Skip to main content
Log in

Fever-triggered ventricular arrhythmias in Brugada syndrome and type 2 long-QT syndrome

  • Interuniversity Cardiology Institute of the Netherlands
  • Published:
Netherlands Heart Journal Aims and scope Submit manuscript

Abstract

The risk for lethal ventricular arrhythmias is increased in individuals who carry mutations in genes that encode cardiac ion channels. Loss-of-function mutations in SCN5A, the gene encoding the cardiac sodium channel, are linked to Brugada syndrome (BrS). Arrhythmias in BrS are often preceded by coved-type ST-segment elevation in the right-precordial leads V1 and V2. Loss-of-function mutations in KCNH2, the gene encoding the cardiac ion channel that is responsible for the rapidly activating delayed rectifying potassium current, are linked to long-QT syndrome type 2 (LQT-2). LQT-2 is characterised by delayed cardiac repolarisation and rate-corrected QT interval (QTc) prolongation. Here, we report that the risk for ventricular arrhythmias in BrS and LQT-2 is further increased during fever. Moreover, we demonstrate that fever may aggravate coved-type ST-segment elevation in BrS, and cause QTc lengthening in LQT-2. Finally, we describe molecular mechanisms that may underlie the proarrhythmic effects of fever in BrS and LQT-2. (Neth Heart J 2010;18:165-9.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Wilde AA, Antzelevitch C, Borggrefe M, Brugada J, Brugada R, Brugada P, et al. Proposed diagnostic criteria for the Brugada syndrome: consensus report. Circulation. 2002;106:2514-9.

    Google Scholar 

  2. Amin AS, Asghari-Roodsari A, Tan HL. Cardiac sodium channelopathies. Pflügers Arch-Eur J Physiol. 2009. DOI 10.1007/s00424-009-0761-0.

  3. January CT, Riddle JM. Early afterdepolarizations: Mechanism of induction and block. A role for L-type Ca++ current. Circ Res. 1989;64:977-90.

    Google Scholar 

  4. Tan HL, Meregalli PG. Lethal ECG changes hidden by therapeutic hypothermia. Lancet. 2007;369:78.

    Google Scholar 

  5. Patruno N, Pontillo D, Achilli A, Ruggeri G, Critelli G. Electrocardiographic pattern of Brugada syndrome disclosed by a febrile illness: clinical and therapeutic implications. Europace. 2003;5:251-5.

    Google Scholar 

  6. Amin AS, Meregalli PG, Bardai A, Wilde AA, Tan HL. Fever increases the risk for cardiac arrest in the Brugada syndrome. Ann Intern Med. 2008;149:216-8.

    Google Scholar 

  7. Dumaine R, Towbin JA, Brugada P, Vatta M, Nesterenko DV, Nesterenko VV, et al. Ionic mechanisms responsible for the electrocardiographic phenotype of the Brugada syndrome are temperature dependent. Circ Res. 1999;85:803-9.

    Google Scholar 

  8. Amin AS, Verkerk AO, Bhuiyan ZA, Wilde AAM, Tan HL. Novel Brugada syndrome-causing mutation in ion-conducting pore of cardiac Na+ channel does not affect ion selectivity properties. Acta Physiol Scand. 2005;185:291-301.

    Google Scholar 

  9. Wang DW, Makita N, Kitabatake A, Balser JR, George AL Jr. Enhanced Na+ channel intermediate inactivation in Brugada syndrome. Circ Res. 2000;87:E37-43.

    Google Scholar 

  10. Balser JR. The cardiac sodium channel: gating function and molecular pharmacology. J Mol Cell Cardiol. 2001;33:599-613.

    Google Scholar 

  11. Tukkie R, Sogaard P, Vleugels J, de Groot IK, Wilde AA, Tan HL. Delay in right ventricular activation contributes to Brugada syndrome. Circulation. 2004;109:1272-7.

    Google Scholar 

  12. Meregalli PG, Wilde AA, Tan HL. Pathophysiological mechanisms of Brugada syndrome: depolarization disorder, repolarization disorder, or more? Cardiovasc Res. 2005;67:367-78.

  13. Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. Am J Hum Genet. 2001;68:1327-32.

    Google Scholar 

  14. Yang Y, Wang Y, Li S, Xu Z, Li H, Ma L, et al. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet. 2004;41:171-4.

    Google Scholar 

  15. Amin AS, de Groot EA, Ruijter JM, Wilde AA, Tan HL. Exercise-induced ECG changes in Brugada syndrome. Circ Arrhythm Electrophysiol. 2009;2:531-9.

    Google Scholar 

  16. Coronel R, Casini S, Koopmann TT, Wilms-Schopman FJ, Verkerk AO, de Groot JR, et al. Right ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome: a combined electrophysiological, genetic, histopathologic, and computational study. Circulation. 2005;112:2769-77.

    Google Scholar 

  17. Anderson CL, Delisle BP, Anson BD, Kilby JA, Will ML, Tester DJ, et al. Fever-induced QTc prolongation and ventricular arrhythmias in individuals with type 2 congenital long QT syndrome. J Clin Invest. 2008;118:2552-61.

    Google Scholar 

  18. Anderson CL, Delisle BP, Anson BD, Kilby JA, Will ML, Tester DJ, et al. Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation. 2006;113:365-73.

    Google Scholar 

  19. Burashnikov A, Shimizu W, Antzelevitch C. Fever accentuates transmural dispersion of repolarization and facilitates development of early afterdepolarizations and torsade de pointes under long-QT Conditions. Circ Arrhythm Electrophysiol. 2008;1:202-8.

    Google Scholar 

  20. Delisle BP, Anson B, Rajamani S, January CT. Biology of cardiac arrhythmias: Ion channel protein trafficking. Circ Res. 2004;94:1418-28.

    Google Scholar 

  21. Yan GX, Wu Y, Liu T, Wang J, Marinchak RA, Kowey PR. Phase 2 early afterdepolarization as a trigger of polymorphic ventricular tachycardia in acquired long-QT syndrome: direct evidence from intracellular recordings in the intact left ventricular wall. Circulation. 2001;103:2851-6.

    Google Scholar 

  22. Pasquie JL, Sanders P, Hocini M, Hsu LF, Scavee C, Jais P, et al. Fever as a precipitant of idiopathic ventricular fibrillation in patients with normal hearts. J Cardiovasc Electrophysiol. 2004;15:1271-6.

    Google Scholar 

  23. D'Aloia A, Faggiano P, Brentana L, Boldini A, Curnis A, Bontempi L, et al. Recurrent ventricular fibrillation during a febrile illness and hyperthermia in a patient with dilated cardiomyopathy and automatic implantable cardioverter defibrillator. An example of reversible electrical storm. Int J Cardiol. 2005;103:207-8.

    Google Scholar 

  24. Burrell C, Reddy S, Haywood G, Cunningham R.Cardiac arrest associated with febrile illness due to U.K. acquired Cyclospora cayetanensis. J Infect. 2007;54:e13-5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Heart Failure Research Centre, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, and Interuniversity Cardiology Institute Netherlands

Heart Failure Research Centre, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands

Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands

Departments of Medicine and Physiology, Cellular and Molecular Arrhythmia Research Program, University of Wisconsin, Madison, Wisconsin, USA

Heart Failure Research Centre, Department of Experimental Cardiology, and Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amin, A.S., Klemens, C.A., Meregalli, P.G. et al. Fever-triggered ventricular arrhythmias in Brugada syndrome and type 2 long-QT syndrome . NHJL 18, 165–169 (2010). https://doi.org/10.1007/BF03091755

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03091755

Navigation