Skip to main content
Log in

Distribution and isoform diversity of the organellar Ca2+ pumps in the brain

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

The gene family of organellar-type Ca2+ transport ATPases consists of three members. SERCA1 is expressed exclusively in fast skeletal muscle; SERCA2 is ubiquitously expressed, whereas SERCA3 is considered to be mainly expressed in cells of the hematopoietic lineage and in some epithelial cells. In the brain, the organellar-type Ca2+ transport ATPases are almost exclusively transcribed from the SERCA2 gene. Four different SERCA2 mRNAs have been described (classes 1–4). However, unlike in nonneuronal cells, which express the class 1, 2, and 3 splice variants, the main SERCA2 mRNA in the brain is the class 4 messenger. Similar to classes 2 and 3, the class 4 codes for the ubiquitously expressed SERCA2b protein. Recently, we have reported the distribution of the SERCA isoforms in the brain (Baba-Aissa et al., 1996a,b). SERCA2b was present in most neurons of all investigated brain regions. The highest levels were found in the Purkinje neurons of the cerebellum and in the pyramidal cells of the hippocampus. Interestingly, SERCA3 and SERCA2a are coexpressed along with SERCA2b in the Purkinje neurons, but are weakly expressed in the other brain regions if present at all. Since these three protein isoforms have a different affinity for Ca2+, their possible roles in relation to Ca2+ stores in neurons are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baba-Aissa, F., Raeymaekers, L., Wuytack, F., Callewaert, G., Dode, L., Missiaen, L., et al. (1996a) Purkinje neurons express the SERCA3 isoform of the organellar type Ca2+ transport ATPase.Mol. Brain Res. 41, 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Baba-Aissa, F., Raeymaekers, L., Wuytack, F., De Greef, C., Missiaen, L., and Casteels, R. (1996b) Distribution of the organellar Ca2+ ATPase SERCA2 isoforms in the cat brain.Brain Res.,743, 141–153.

    Article  PubMed  CAS  Google Scholar 

  • Bobe, R., Bredoux, R., Wuytack, F., Quarck, R., Kovàcs, T., Papp, B., et al. (1994) The rat platelet 97-kDa Ca2+ ATPase isoform is the sarcoendoplasmic reticulum Ca2+ATPase 3 protein.J. Biol. Chem. 269, 1417–1424.

    PubMed  CAS  Google Scholar 

  • Brandl, C. J., Green, M. N., Korczak, B., and MacLennan, D. H. (1986) Two Ca2+-ATPase genes: Homologies and mechanistic implications of deduced amino acid sequences.Cell 44, 597–607.

    Article  PubMed  CAS  Google Scholar 

  • Burk S. E., Lytton J., MacLennan D. H., and Shull G. E. (1989) cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump.J. Biol. Chem. 264 18,561–18,568.

    CAS  Google Scholar 

  • Campbell, A. M., Kessler, P. D., Sagara, Y., Inesi, G., and Fambrough, D. M. (1991) Nucleotide sequences of avian cardiac and brain SR/ER Ca2+ ATPase and functional comparisons with fast twitch Ca2+ ATPase Calcium affinities and inhibitor effects.J. Biol. Chem. 266, 16,050–16,055.

    CAS  Google Scholar 

  • Campbell, A. M., Kessler, P. D., and Fambrough D. M. (1992) The alternative carboxyl termini of avian cardiac and brain sarcoplasmic reticulum/endoplasmic reticulum Ca2+-ATPases are on opposite sides of the membrane.J. Biol. Chem. 267, 9321–9325.

    PubMed  CAS  Google Scholar 

  • Dode L., Wuytack, F., Kools, P. F. J., Baba-Aissa, F., Raeymaekers, L., Brike, P., Van De Ven, W. J. M., et al. (1996) cDNA cloning, expression and chromosomal localization of the human sarco/endoplasmic reticulum Ca2+ ATPase 3 gene.Biochem. J. 318, 689–699.

    PubMed  CAS  Google Scholar 

  • Eggermont, J. A., Wuytack, F., De Jaegere, S., Nelles, L., and Casteels, R. (1989) Evidence for two isoforms of the endoplasmic-reticulum Ca2+-pump in pig smooth muscle.Biochem. J. 260, 757–761.

    PubMed  CAS  Google Scholar 

  • Eggermont, J. A., Wuytack, F., and Casteels, R. (1991) Characterization of the 3′ end of the pig sarcoplasmic/endoplasmic-reticulum Ca2+ pump gene 2.Biochim. Biophys. Acta. 1088, 448–451.

    PubMed  CAS  Google Scholar 

  • Gunteski-Hamblin, A. M., Greeb, J., and Shull, G. E. (1988) A novel Ca2+-pump expressed in brain, kidney, and stomach is encoded by an alternative transcript of the slow-twitch muscle sarcoplasmic reticulum Ca2+-ATPase gene.J. Biol. Chem. 263, 15,032–15,040.

    CAS  Google Scholar 

  • Heizmann, C. W. and Braun, K. (1992) Changes in Ca2+-binding proteins in human neurodegenerative disorders.Trends Neurosci. 15, 259–264.

    Article  PubMed  CAS  Google Scholar 

  • Kostyuk, P. G., Mironov, S. L., Tepikin, A. V., and Belan, P. V. (1989) Cytoplasmic free Ca in isolated snail neurons as revealed by fluorescent probe Fura-2: Mechanisms of Ca recovery after Ca load and Ca release from intracellular stores.J. Membrane Biol. 110, 11–18.

    Article  CAS  Google Scholar 

  • Lytton, J. and MacLennan, D. H. (1988) Molecular cloning of cDNAs from human kidney coding for two alternatively spliced products of the cardiac Ca2+-ATPase gene.J. Biol. Chem. 263, 15,024–15,031.

    CAS  Google Scholar 

  • Lytton, J., Westlin, M., Burk, S. E., Shull, G. E., and MacLennan, D. H. (1992) Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps.J. Biol. Chem. 267, 14,483–14,489.

    CAS  Google Scholar 

  • Maruyama, K. and MacLennan, D. H. (1988) Mutation of aspartic acid-351, lysine-352, and lysine-515 alters the Ca2+ transport activity of the Ca2+-ATPase expressed in COS-1 cells.Proc. Natl. Acad. Sci. USA 85, 3314–3318.

    Article  PubMed  CAS  Google Scholar 

  • Miller, K. K., Verma, A., Snyder, S. H., and Ross, C. A. (1991) Localization of an endoplasmic reticulum calcium ATPase mRNA in rat brain by in situ hybridization.Neuroscience 43, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, P. L. and Carafoli, E. (1987a) Ion motive ATPases.Trends Biochem. Sci. 12, 146–150.

    Article  CAS  Google Scholar 

  • Pedersen, P. L. and Carafoli, E. (1987b) Ion motive ATPases.Trends Biochem. Sci. 12, 186–189.

    Article  CAS  Google Scholar 

  • Pereira, C., Ferreira, C., Carvalho, C., and Oliveira, C. (1996) Contribution of plasma membrane and endoplasmic reticulum Ca2+-ATPases to the synaptosomal Ca2+i increase during oxidative stress.Brain Res. 713, 269–277.

    Article  PubMed  CAS  Google Scholar 

  • Petrozzino, J. J., Pozzo Miller, L. D., and Connor, J. A. (1995) Micromolar Ca2+ transients in dentritic spines of hippocampal pyramidal neurons in brain slice.Neuron 14, 1223–1231.

    Article  PubMed  CAS  Google Scholar 

  • Peuchen, S., Clark, J. B., and Duchen, M. R. (1996) Mechanisms of intracellular calcium regulation in adult astrocytes.Neuroscience 71, 871–883.

    Article  PubMed  CAS  Google Scholar 

  • Plessers, L., Eggermont, J. A., Wuytack, F., and Casteels, R. (1991) A study of the organellar Ca2+-transport ATPase isozymes in pig cerebellar Purkinje neurons.J. Neurosci. 11, 650–656.

    PubMed  CAS  Google Scholar 

  • Siesjö, B. K. (1990) Calcium in the brain under physiological and pathological conditions.Eur. Neurol. 30, 3–9.

    PubMed  Google Scholar 

  • Simpson, P. B., Challis, J. R. A., and Nahorski, S. R. (1995) Neuronal Ca2+ stores: activation and function.Trends Neurosci. 18, 299–306.

    Article  PubMed  CAS  Google Scholar 

  • Sloviter, R. S. (1987) Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy.Science 235, 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Sloviter, R. S. (1989) Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity.J. Comp. Neurol. 280, 183–196.

    Article  PubMed  CAS  Google Scholar 

  • Sloviter, R. S. and Nilaver, G. (1987) Immunocytochemical localization of GABA-, cholecystokinin-, vasoactive intestinal polypeptide-, and somatostatin-like immuno-reactivity in the area dentata and hippocampus of the rat.J. Comp. Neurol. 256, 42–60.

    Article  PubMed  CAS  Google Scholar 

  • Strowbridge, B. W., Buckmaster, P. S., and Schwartzkroin, P. A. (1992) Potentiation of spontaneous synaptic activity in rat mossy cells.Neurosci. Lett. 142, 205–210.

    Article  PubMed  CAS  Google Scholar 

  • Toyofuku, T., Kurzydlowski, K., Lytton, J., and MacLennan, D. H. (1992) The nucleotide binding/hinge domain plays a crucial role in determining isoform-specific Ca2+ dependence of organellar Ca2+ATPases.J. Biol. Chem. 267, 14,490–14,496.

    CAS  Google Scholar 

  • Verboomen, H., Wuytack, F., Van den Bosch, L., Mertens, L., and Casteels, R. (1994) The functional importance of the extreme C-terminal tail in the gene 2 organellar Ca2+-transport ATPase (SERCA2a/b).Biochem. J. 303, 979–984.

    PubMed  CAS  Google Scholar 

  • Villa, A., Sharp, A. H., Racchetti, G., Podoni, P., Bole, D. G., Dunn, W. A., et al. (1992) The endoplasmic reticulum of Purkinje neuron body and dendrites: molecular identity and specializations for Ca2+ transport.Neuroscience 49, 467–477.

    Article  PubMed  CAS  Google Scholar 

  • Worley, P. F., Baraban, J. M., Colvin, J. S., and Snyder, S. H. (1987) Inositol trisphosphate receptor localization in brain: variable stoichiometry with protein kinase C.Nature 325, 159–161.

    Article  PubMed  CAS  Google Scholar 

  • Wu, K. D., Lee, W. S., Wey, J., Bungard, D., and Lytton, J. (1995) Localization and quantification of endoplasmic reticulum-ATPase isoform transcripts.Am. J. Physiol. 269, C775–784.

    PubMed  CAS  Google Scholar 

  • Wuytack, F., Papp, B., Verboomen, H., Raeymaekers, L., Dode, L., Bobe, R., et al. (1994). The sarco/endoplasmic reticulum Ca2+-ATPase 3-type Ca2+ pump is expressed in platelets, in lymphoid cells and in mast cells.J. Biol. Chem. 269, 1410–1416.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fawzia Baba-Aissa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baba-Aissa, F., Raeymaekers, L., Wuytack, F. et al. Distribution and isoform diversity of the organellar Ca2+ pumps in the brain. Molecular and Chemical Neuropathology 33, 199–208 (1998). https://doi.org/10.1007/BF02815182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815182

Index Entries

Navigation