Skip to main content
Log in

The quantum structure of spacetime at the Planck scale and quantum fields

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose uncertainty relations for the different coordinates of spacetime events, motivated by Heisenberg's principle and by Einstein's theory of classical gravity. A model of Quantum Spacetime is then discussed where the commutation relations exactly implement our uncertainty relations.

We outline the definition of free fields and interactions over QST and take the first steps to adapting the usual perturbation theory. The quantum nature of the underlying spacetime replaces a local interaction by a specific nonlocal effective interaction in the ordinary Minkowski space. A detailed study of interacting QFT and of the smoothing of ultraviolet divergences is deferred to a subsequent paper.

In the classical limit where the Planck length goes to zero, our Quantum Spacetime reduces to the ordinary Minkowski space times a two component space whose components are homeomorphic to the tangent bundleTS 2 of the 2-sphere. The relations with Conne's theory of the standard model will be studied elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amati, D., Ciafaloni, M., Veneziano, G.: Nucl. Phys.B347, 551 (1990); Amati, D.: On Spacetime at Small Distances. In: Sakharov Memorial Lectures, Kladysh, L.V., Fainberg, V.YA., eds., Nova Science P. Inc., 1992

    Article  Google Scholar 

  2. Ellis, J., Mavromatos, N.E., Nanopoulos, D.V.: A Liouville String Approach to Microscopic Time in Cosmology. Preprint CERN-TH. 7000/93

  3. Ashtekar, A.: Quantum Gravity: A Mathematical Physics Perspective. Preprint CGPG-93/12-2

  4. Kempf, A.: Uncertainty Relations in Quantum Mechanics with Quantum Group Symmetry. Preprint DAMT/93-65

  5. Woronowicz, S.L.: Compact Matrix Pseudogroups. Commun. Math. Phys.111, 613–665 (1987)

    Article  Google Scholar 

  6. Wheeler, J.A.: Geometrodynamics and the Issue of the Final State. In: Relativity, Groups and Topology. De Witt, C., De Witt, B., (eds.) Gordon and Breach 1965. Hawking, S.W., Spacetime Foam. Nucl. Phys.B144, 349, (1978)

  7. Madore, J.: Fuzzy Physics. Ann. Phys.219, 187–198 (1992)

    Article  Google Scholar 

  8. Connes, A.: Non-Commutative Geometry. Academic Press, 1994

  9. Connes, A., Lott, J.: Particle Models and Non Commutative Geometry. Nucl. Phys. B. (Proc. Suppl.)11B, 19–47 (1990); Kastler, D.: A detailed account of Alain Connes' version of the standard model in non-commutative geometry, I, II. Rev. Math. Phys.5, 477–532 (1993); III, Preprint CPT-92/P. 2814; IV (with Th. Schücker), Preprint CPT-94/P.3092

    Google Scholar 

  10. Schrader, R.: The Maxwell Group and the Quantum Theory of Particles in Classical Homogeneous Electric Fields. Forts. der Phys.20, 701–734 (1972)

    Google Scholar 

  11. Filk, T.: Field Theory on the Quantum Plane. Preprint, University of Freiburg, August 1990, THEP 90/12

  12. Grosse, H., Madore, J.: A Noncommutative Version of the Schwinger Model. Phys. Lett.B283, 218 (1992)

    Article  Google Scholar 

  13. Mack, G., Schomerus, V.: Models of Quantum Space Time: Quantum Field Planes. Preprint, Harvard University HUTMP 93-B335. Lukierski, J., Ruegg, H.: Quantum κ-Poincaré in any Dimension. Phys. Lett. B, to appear

  14. Doplicher, S., Fredenhagen, K., Roberts, J.E.: Spacetime Quantization Induced by Classical Gravity. Phys. Lett. B331, 33–44 (1994)

    Google Scholar 

  15. Hawking, S.W., Ellis, G.F.R.: The large scale structure of spacetime. Cambridge: Cambridge U.P., 1973

    Google Scholar 

  16. Knight, J.M.: Strict localization in Quantum Field Theory. J. Math. Phys.2, 439–471 (1961); Licht, A.L.: Strict localization. J. Math. Phys.4, 1443 (1963)

    Article  Google Scholar 

  17. Haag, R.: Local Quantum Physics. Berlin, Heidelberg, New York: Springer TMP, 1993

    Google Scholar 

  18. Straumann, N.: General Relativity and Relativistic Astrophysics. Berlin-Heidelberg-New York: Springer, 1984

    Google Scholar 

  19. Woronowicz, S.L.: Unbounded elements affiliated withC *-algebras and non-compact Quantum Groups. Commun. Math. Phys.136, 399–432 (1991). Woronowicz, S.L.:C *-Algebras Generated by Unbounded Elements. Preprint 1994; Baaj, S.: Multiplicateur non borné. Thèse, Université Paris VII 1980

    Article  Google Scholar 

  20. Pedersen, G.K.:C *-Algebras and their Automorphism Groups. New York: Acad. Press, 1979

    Google Scholar 

  21. Dixmier, J.:C *-Algebras. Amsterdam: North Holland, 1980

    Google Scholar 

  22. Von Neumann, J.: Über die Eindeutigkeit der Schrödingerschen Operatoren. Math. Annalen104, 570–578 (1931)

    Article  Google Scholar 

  23. Filk, T.: Renormalizability of Field Theories on Quantum Spaces, Preprint University of Freiburg, THEP 94/15, 1994

  24. Didonato P. et al. eds.: Sympletic Geometry and Mathematical Physics. Actes du Colloque en Honneur de J.M. Souriau, Basel, Boston: Birkhäuser, 1991

    Google Scholar 

  25. Rieffel, M.A.: Deformation Quantization of Heisenberg Manifolds. Commun. Math. Phys.122, 531–562 (1989)

    Article  Google Scholar 

  26. Landsman, N.P.: Strict Deformation Quantization of a Particle in External Gravitational and Yang Mills Fields. J. Geom. Phys.12, 93–132 (1993)

    Article  Google Scholar 

  27. Doplicher, S., Fredenhagen, K.: in preparation

  28. Maggiore, M.: Quantum Groups, Gravity, and the generalized uncertainty principle, Phys. Rev.D49, 5182–5187 (1994); Phys. Lett. B304, 65–69 and319, 83–86 (1993)

    Article  Google Scholar 

  29. Geray, L.J.: Quantum Gravity and minimum Length. Preprint Imperial/TP/93-94/20, gr-qc/9403008

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by

Research supported by MRST and CNR-GNAFA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doplicher, S., Fredenhagen, K. & Roberts, J.E. The quantum structure of spacetime at the Planck scale and quantum fields. Commun.Math. Phys. 172, 187–220 (1995). https://doi.org/10.1007/BF02104515

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02104515

Keywords

Navigation