Skip to main content
Log in

Effects of growth conditions on the activities of superoxide dismutase and NADH-oxidase/NADH-peroxidase inStreptococcus lactis

  • Published:
Current Microbiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

An increase in the superoxide dismutase (SOD) activity inStreptococcus lactis was observed when the cells were grown at increased oxygen partial pressures or exposed to hyperbaric oxygen tensions. The NADH-oxidase/NADH-peroxidase activities inS. lactis increased in galactose-grown cells when cultivated in air compared with N2/CO2. This effect did not occur when glucose was the carbon source; however, an increase in the activities of these enzymes was observed in oxygen atmosphere. The correlation between SOD, NADH-oxidase/NADH-peroxidase, and the metabolic pathways involved is discussed. The effect of manganese on the SOD activity is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Anders, R. F., Hogg D. M., Jago, G. R. 1970. Formation of hydrogen peroxide by group N streptococci and its effect on their growth and metabolism. Applied Microbiology19:608–612.

    Google Scholar 

  2. Asada, K., Yoshikawa, K., Takahashi, M., Maeda, Y., Enmanji, K. 1975. Superoxide dismutases from a bluegreen alga,Plectonema boryanum. Journal of Biological Chemistry250:2801–2807.

    Google Scholar 

  3. Britton, L., Malinowski, D. P., Fridovich, I. 1978. Superoxide dismutase and oxygen metabolism inStreptococcus faecalis and comparisons with other organisms. Journal of Bacteriology134:229–236.

    Google Scholar 

  4. Dolin, M. I. 1955. The DPNH-oxidizing enzymes ofStreptococcus faecalis. II. The enzymes utilizing oxygen, cytochrome c, peroxide and 2,6-dichlorophenol-indophenol or ferricyanide as oxidants. Archives of Biochemistry and Biophysics55:415–435.

    Google Scholar 

  5. Elstner, E. F. 1982. Oxygen activation and oxygen toxicity. Annual Review of Plant Physiology33:73–96.

    Google Scholar 

  6. Fridovich, I. 1975. Superoxide dismutases. Annual Review of Biochemistry44:147–159.

    Google Scholar 

  7. Fridovich, I. 1978. The biology of oxygen radicals. Science201:875–880.

    Google Scholar 

  8. Gottlieb, S. F. 1981. Oxygen toxicity in unicellular organisms, pp. 124–149. In: Gilbert, D. L., (ed.), Oxygen and living processes, New York: Springer-Verlag.

    Google Scholar 

  9. Götz, F., Elstner, E. F., Sedewitz, B., Lengfelder, E. 1980. Oxygen utilization byLactobacillus plantarum. II. Superoxide and superoxide dismutation. Archives of Microbiology125:215–220.

    Google Scholar 

  10. Gregory, E. M., Fridovich, I. 1973. Induction of superoxide dismutase by molecular oxygen. Journal of Bacteriology114:543–548.

    Google Scholar 

  11. Hansson, L., Häggström, M. H. 1983. Effects of growth conditions on superoxide dismutase and catalase activities inSaccharomyces cerevisiae var.ellipsoideus. Current Microbiology9:19–23.

    Google Scholar 

  12. Hassan, H. M., Fridovich, I. 1977. Physiological function of superoxide dismutase in glucose-limited chemostat cultures ofEscherichia coli. Journal of Bacteriology130:805–811.

    Google Scholar 

  13. Hassan, H. M., Fridovich, I. 1977. Regulation of superoxide dismutase synthesis inEscherichia coli: glucose effects. Journal of Bacteriology132:505–510.

    Google Scholar 

  14. Hassan, H. M., Fridovich, I. 1980. Superoxide dismutases: detoxication of free radical, pp. 311–332. In: Jacoby, W. B. (ed.), Enzymatic basis of detoxication, vol. 1, New York: Academic Press.

    Google Scholar 

  15. Hassan, H. M., Fridovich, I. 1982. Exacerbations of oxygen toxicity by redox active compounds, pp. 151–167. In: King, T. E., Mason, H. S., Morrison, M. (eds.) Oxidases and related redox systems: proceedings of the third international symposium. New York: Pergamon.

    Google Scholar 

  16. Johnson, M. J., Borkowski, J., Engblom, C. 1964. Steam sterilizable probes for dissolved oxygen measurement. Biotechnology and Bioengineering6:457–468.

    Google Scholar 

  17. Kirby, T., Blum, J., Kahane, I., Fridovich, I. 1980. Distinguishing between Mn-containing and Fe-containing superoxide dismutases in crude extracts of cells. Archives of Biochemistry and Biophysics201:551–555.

    Google Scholar 

  18. Korycka-Dahl, M., Richardson, T. 1980. Initiation of oxidative changes in foods. Journal of Dairy Science63:1181–1198.

    Google Scholar 

  19. Kulakova, S. M., Gogotov, I. N. 1982. Effect of oxygen and growth substrates on the activity of superoxide dismutase and catalase in microorganisms. Microbiology [English translation of Microbiologiya]51:16–21.

    Google Scholar 

  20. Lang, E., Lang, H. 1972. Spezifische Farbreaktion zum direkten Nachweis der Ameisensäure. Fresenius' Zeitschrift für Analytische Chemie260:8–10.

    Google Scholar 

  21. Lindmark, D. G., Paolella, P., Wood, N. P. 1969 The pyruvate formate-lyase system ofStreptococcus faecalis. I. Purification and properties of the formate-pyruvate exchange enzyme. Journal of Biological Chemistry244:3605–3612.

    Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry193:265–275.

    Google Scholar 

  23. McCord, J. M., Fridovich, I. 1969. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry244:6049–6055.

    Google Scholar 

  24. Moustafa, H. H., Collins, E. B. 1968. Rote of galactose or glucose-1-phosphate in preventing the lysis ofStreptococcus diacetilactis. Journal of Bacteriology95:592–602.

    Google Scholar 

  25. Petkau, A. 1978. Radiation protection by superoxide dismutase. Photochemistry and Photobiology28:765–774.

    Google Scholar 

  26. Petrone, W. F., English, D. K., Wong, K., McCord, J. M. 1980. Free radicals and inflammation: superoxide-dependent activation of a neutrophil chemotactic factor in plasma. Proceedings of the National Academy of Sciences of the United States of America77:1159–1163.

    Google Scholar 

  27. Pirt, S. J. 1975. Principles of microbe and cell cultivation, p. 125. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  28. Ritchey, T. W., Seeley, H. W. Jr., 1976. Distribution of cytochrome-like respiration in Streptococci. Journal of General Microbiology93:195–203.

    Google Scholar 

  29. Steinman, H. M. 1982 Superoxide dismutases: protein chemistry and structure-function relationships, pp. 11–68. In: Oberley, L. W. (ed.), Superoxide dismutase, vol. 1 Florida: CRC.

    Google Scholar 

  30. Thomas, T. D., Ellwood, D. C., Longyear, V. M. C. 1979. Change from homo-to heterolactic fermentation byStreptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. Journal of Bacteriology138:109–117.

    Google Scholar 

  31. Walker, G. A., Kilgour, G. L. 1965. Pyridine nucleotide oxidizing enzymes ofLactobacillus casei. II. Oxidase and peroxidase. Archives of Biochemistry and Biophysics111:534–539.

    Google Scholar 

  32. Whitenbury, R. 1978. Biochemical characteristics ofStreptococcus species, pp. 51–69. In: Skinner, F. A., Quesnel, L. B. (eds.), Streptococci. London: Academic Press.

    Google Scholar 

  33. Yano, K., Nishie, H. 1978. Superoxide dismutase in facultatively anaerobic bacteria: enzyme levels in relation to growth conditions. Journal of General and Applied Microbiology24:333–339.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansson, L., Häggström, M.H. Effects of growth conditions on the activities of superoxide dismutase and NADH-oxidase/NADH-peroxidase inStreptococcus lactis . Current Microbiology 10, 345–351 (1984). https://doi.org/10.1007/BF01626563

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01626563

Keywords

Navigation