Skip to main content
Log in

Effect of pyridine compounds on ammonia oxidation by autotrophic nitrifying bacteria andMethylosinus trichosporium OB3b

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Ammonia oxidation, as measured by nitrite production, was inhibited by 2-chloro-6-trichloromethyl-pyridine (nitrapyrin, N-serve) in the methane-oxidizing bacterium,Methylosinus trichosporium OB3b, and the autotrophic nitrifying organisms,Nitrosococcus oceanus andNitrosomonas marina. 6-Chloropicolinic acid, a hydrolysis product of nitrapyrin, was ineffective as an inhibitor of ammonia oxidation by either the methanotroph or the autotrophs. Picolinic acid (2-carboxy-pyridine), in contrast, inhibited nitrification by the methane-oxidizing bacterium but not by the autotrophic cultures. Picolinic acid may provide a means for differentiating ammonia oxidation attributable to methanotrophs from that resulting from autotrophs in environmental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Belser, L. W., Schmidt, E. L. 1981. Inhibitory effect of nitrapyrin on three genera of ammonia-oxidizing nitrifiers. Applied and Environmental Microbiology41:819–821.

    Google Scholar 

  2. Billen, G. 1976. Evaluation of nitrifying activity in sediments by dark14C-bicarbonate incorporation. Water Research10:51–57.

    Google Scholar 

  3. Bremner, J. M., Blackmer, A. M., Bundy, L. G. 1978. Problems in use of nitrapyrin (N-serve) to inhibit nitrification in soil. Soil Biology and Biochemistry10:441–442.

    Google Scholar 

  4. Campbell, N. E. R., Aleem, M. I. H. 1965. The effect of 2-chloro-6-(trichloromethyl) pyridine on the chemoautotrophic metabolism of nitrifying bacteria. Antonie van Leeuwenhoek Journal Microbiology and Serology31:124–136.

    Google Scholar 

  5. Dalton, H. 1977. Ammonia oxidation by the methane-oxidizing bacteriumMethylococcus capsulatus strain Bath. Archives of Microbiology114:273–279.

    Google Scholar 

  6. Focht, D. D., Verstraete, W. 1977. Biochemical ecology of nitrification and denitrification. Advances in Microbial Ecology1:135–214.

    Google Scholar 

  7. Gasser, J. K. R. 1970. Nitrification inhibitors—their occurrence, production, and effects on their use on crop yields and composition. Soil and Fertilizers33:547–554.

    Google Scholar 

  8. Goring, C. A. I. 1962. Control of nitrification by 2-chloro-6-(trichloromethyl) pyridine. Soil Science93:211–218.

    Google Scholar 

  9. Harrits, S. M., Hanson, R. S. 1980. Stratification of aerobic methane-oxidizing organisms in Lake Mendota, Madison, Wisconsin. Limnology and Oceanography25:412–421.

    Google Scholar 

  10. Henriksen, K. 1980. Measurement of in situ rates of nitrification in sediment. Microbial Ecology6:329–337.

    Google Scholar 

  11. Higgins, I. J., Quayle, J. R. 1970. Oxygenation of methane by methane-grownPseudomonas methanica andMethanomonas methanooxidans. Biochemical Journal118:201–208.

    Google Scholar 

  12. Higgins, I. J., Hammond, R. C., Sariaslani, F. S., Best, D., Davies, M. M., Tryhorn, S. E., Taylor, F. 1979. Biotransformation of hydrocarbons and related compounds by whole organism suspensions of methane-grownMethylosinus trichosporium OB3b. Biochemical and Biophysical Research Communications89:671–677.

    Google Scholar 

  13. Higgins, I. J., Best, D. J., Hammond, R. C. 1980. New findings in methane utilizing bacteria highlight their importance in the biosphere and their commercial potential. Nature286:561–564.

    Google Scholar 

  14. Hollocher, T. C., Tate, M. E., Nicholas, D. J. D. 1981. Oxidation of ammonia byNitrosomonas europaea: definitive18O-tracer evidence that hydroxylamine formation involves a monooxygenase. Journal of Biological Chemistry256:10834–10836.

    Google Scholar 

  15. Hutton, W. E., Zobell, C. E. 1953. Production of nitrite from ammonia by methane-oxidizing bacteria in sediments. Journal of Bacteriology65:216–219.

    Google Scholar 

  16. Hyder, S. L., Meyers, A., Cayer, M. L. 1979. Membrane modulation in a methylotrophic bacteriumMethylococcus capsulatus (Texas) as a function of growth substrate. Tissue and Cell11:597–610.

    Google Scholar 

  17. Hyman, M. R., Wood, P. M. 1983. Methane oxidation byNitrosomonas europaea. Biochemical Journal212:31–37.

    Google Scholar 

  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry193:265–275.

    Google Scholar 

  19. Malashenko, Y. R., Sokolov, I. G., Romanovskaya, V. A., Shkurko, Y. B. 1979. Elements of lithotrophic metabolism in the obligate methylotrophMethylococcus thermophilus. Microbiologiya48:592–598.

    Google Scholar 

  20. O'Neill, J. R., Wilkinson, J. F. 1977. Oxidation of ammonia by methane-oxidizing bacteria and the effects of ammonia on methane oxidation. Journal of General Microbiology100:407–412.

    Google Scholar 

  21. Redemann, C. T., Meikle, R. W., Widofsky, J. G. 1964. Nutrient conserving agents: loss of 2-chloro-6-(trichloromethyl) pyridine from soil. Journal of Agriculture and Food Chemistry12:207–218.

    Google Scholar 

  22. Ribbons, D. W., Michalover, J. L. 1970. Methane oxidation by cell-free extracts ofMethylococcus capsulatus. Federation of European Biochemical Societies Letters11:41–44.

    Google Scholar 

  23. Rudd, J. W. M., Taylor, C. D. 1980. Methane cycling in aquatic environments. Advances in Aquatic Microbiology2:77–150.

    Google Scholar 

  24. Salvas, P. L., Taylor, B. F. 1980. Blockage of methanogenesis in marine sediments by the nitrification inhibitor 2-chloro-6-(trichloromethyl) pyridine (nitrapyrin or N-serve). Current Microbiology4:305–308.

    Google Scholar 

  25. Shattuck, G. E., Alexander, M. 1963. A differential inhibitor of nitrifying microorganisms. Proceeding of the Soil Society of America27:600–601.

    Google Scholar 

  26. Somville, M. 1978. A method for the measurement of nitrification rates in water. Water Research12:843–848.

    Google Scholar 

  27. Strickland, J. D. H., Parsons, T. R. 1972. A practical handbook of seawater analysis. Bulletin of the Fisheries Research Board of Canada, Volume 167.

  28. Suzuki, I., Dular, U., Kwok, S. C. 1974. Ammonia or ammonium ion as substrate for oxidation byNitrosomonas europaea cells and extracts. Journal of Bacteriology120:556–558.

    Google Scholar 

  29. Tate, III, R. L. 1977. Nitrification in histosols: a potential role for the heterotrophic nitrifier. Applied and Environmental Microbiology33:911–914.

    Google Scholar 

  30. Watson, S. W., Valois, F. W., Waterbury, J. B. 1981. The family Nitrobacteriaceae, pp. 1005–1022. In: Starr, M. P., Stolp, H., Truper, H. G., Balows, A., Schlegel, H. G., (eds.), The prokaryotes, vol. 1. New York: Springer-Verlag.

    Google Scholar 

  31. Whittenbury, R., Dalton, H., Eccleston, M., Reed, H. L. 1975. The different types of methane oxidizing bacteria and some of their more unusual properties, pp. 1–9. In: Terui, G., (ed.), Microbial growth on C1 compounds. Proceedings of the International Symposium on Microbial Growth on C1 Compounds, Tokyo. Osaka: Society of Fermentation Technology.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvas, P.L., Taylor, B.F. Effect of pyridine compounds on ammonia oxidation by autotrophic nitrifying bacteria andMethylosinus trichosporium OB3b. Current Microbiology 10, 53–56 (1984). https://doi.org/10.1007/BF01576048

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01576048

Keywords

Navigation