Skip to main content
Log in

Non-abelian bosonization in two dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A non-abelian generalization of the usual formulas for bosonization of fermions in 1+1 dimensions is presented. Any fermi theory in 1+1 dimensions is equivalent to a local bose theory which manifestly possesses all the symmetries of the fermi theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Coleman, S.: Quantum sine-Gordon equation as the massive Thirring model. Phys. Rev. D11, 2088 (1975)

    Google Scholar 

  2. Mandelstam, S.: Soliton operators for the quantized sine-Gordon equation. Phys. Rev. D11, 3026 (1975)

    Google Scholar 

  3. Baluni, V.: The Bose form of two-dimensional quantum chromodynamics. Phys. Lett.90 B, 407 (1980)

    Google Scholar 

  4. Steinhardt, P.J.: Baryons and baryonium in QCD2. Nucl. Phys. B176, 100 (1980)

    Google Scholar 

  5. Amati, D., Rabinovici, E.: On chiral realizations of confining theories. Phys. Lett.101 B, 407 (1981)

    Google Scholar 

  6. Wess, J., Zumino, B.: Consequences of anomalous word identities. Phys. Lett.37 B, 95 (1971)

    Google Scholar 

  7. D'Adda, A., Davis, A.C., DiVecchia, P.: Effective actions in non-abelian theories. Phys. Lett.121 B, 335 (1983)

    Google Scholar 

  8. Polyakov, A.M., Wiegmann, P.B.: Landau Institute preprint (1983)

    Google Scholar 

  9. Alvarez, O.: Berkeley preprint (1983)

  10. Witten, E.: Global aspects of current algebra. Nucl. Phys. B (to appear)

  11. Novikov, S.P.: Landau Institute preprint (1982)

  12. Polyakov, A.M.: Interaction of Goldstone particles in two dimensions. Applications to ferromagnets and massive Yang-Mills fields. Phys. Lett.59 B, 79 (1975)

    Google Scholar 

  13. Belavin, A.A., Polyakov, A.M.: Metastable states of two-dimensional isotropic ferromagnets. JETP Lett.22, 245 (1975)

    Google Scholar 

  14. Nappi, C.R.: Some properties of an analog of the chiral model. Phys. Rev. D21, 418 (1980)

    Google Scholar 

  15. Goto, T., Imamura, I.: Note on the non-perturbation-approach to quantum field theory. Prog. Theor. Phys.14, 396 (1955)

    Google Scholar 

  16. Schwinger, J.: Field-theory commutators. Phys. Rev. Lett.3, 296 (1959)

    Google Scholar 

  17. Jackiw, R.: In: Lectures on current algebra and its applications, Treiman S.B., et al. (eds.): Princeton, NJ: Princeton University Press 1972

    Google Scholar 

  18. Coleman, S., Gross, D., Jackiw, R.: Fermion avatars of the Sugawara model. Phys. Rev.180, 1359 (1969)

    Google Scholar 

  19. Kac, V.G.: J. Funct. Anal. Appl.8, 68 (1974)

    Google Scholar 

  20. Lepowsky, J., Wilson, R.L.: Construction of the affine Lie algebra.A 1(1). Commun. Math. Phys.62, 43 (1978)

    Google Scholar 

  21. Frenkel, I.B.: Spinor representations of affine Lie algebras. Proc. Natl. Acad. Sci. USA77, 6303 (1980); J. Funct. Anal.44, 259 (1981)

    Google Scholar 

  22. Feingold, A.J., Frenkel, I.B.: IAS preprint (1983)

  23. Belavin, A.M., Polyakov, A.M., Schwar, A.S., Tyupkin, Yu.S.: Pseudoparticle solutions of the Yang-Mills equations. Phys. Lett.59 B, 85 (1975)

    Google Scholar 

  24. 't Hooft, G.: Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett.37, 8 (1976);

    Google Scholar 

  25. Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D14, 3432 (1976)

  26. Callan, C.G., Jr., Dashen, R., Gross, D.J.: The structure of the gauge theory vacuum. Phys. Lett.63 B, 334 (1976)

    Google Scholar 

  27. Jackiw, R., Rebbi, C.: Vacuum periodicity in a Yang-Mills quantum theory. Phys. Rev. Lett.37, 172 (1976)

    Google Scholar 

  28. Segal, G.: Unitary representations of some infinite-dimensional groups. Commun. Math. Phys.80, 301 (1981)

    Google Scholar 

  29. Frenkel, I., Kac, V.G.: Basic representations. Invent Math.62, 23 (1980)

    Google Scholar 

  30. Kac, V.G., Peterson, D.H.: Spin and wedge representations of infinite-dimensional Lie algebras and groups. Proc. Natl. Acad. Sci. USA78, 3308 (1981)

    Google Scholar 

  31. Frenkel, I.: Private communication

  32. Frishman, Y.: Quark trapping in a model field theory. Mexico City 1973. Berlin, Heidelberg, New York: Springer 1975

    Google Scholar 

  33. Deser, S., Jackiw, R., Templeton, S.: Three-dimensional massive gauge theories. Phys. Rev. Lett.48, 975 (1982); Topologically massive gauge theories. Ann. Phys. (NY)140, 372 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Supported in part by NSF Grant PHY-80-19754

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witten, E. Non-abelian bosonization in two dimensions. Commun.Math. Phys. 92, 455–472 (1984). https://doi.org/10.1007/BF01215276

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01215276

Keywords

Navigation