Skip to main content
Log in

Eigenshape analysis of microfossils: A general morphometric procedure for describing changes in shape

  • Published:
Journal of the International Association for Mathematical Geology Aims and scope Submit manuscript

Abstract

A general morphometric procedure is described that organizes collections of microfossil outlines according to their shape. It involves representing the greatest proportion of variation observed among a collection of shapes by the least number of different shapes. Since these are determined as empirical orthogonal shape functions—eigenfunctions—of the observed shapes, the procedure is termed eigenshape analysis. Observed shapes are arranged and their shape differences systemized by reference to these determined eigenshape functions. The well-known ecophenotypic shape variation with latitude exhibited by the Pleistocene planktonic foraminifer Globorotalia truncatulinoides (d'Orbigny)serves as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anstey, R. L. and Delmet, D. A., 1972, Genetic meaning of zooecial chamber shapes in fossil bryozoans: Fourier analysis: Science, v. 177, p. 1000–1002.

    Google Scholar 

  • Anstey, R. L. and Pachut, J. F., 1980, Fourier packing ordinate: a univariate size-independent measurement of polygonal packing variation in Paleozoic bryozoans: Jour. Math. Geol., v. 12, p. 139–156.

    Google Scholar 

  • Aubrey, D. G., Inman, D. L., and Winant, C. D., 1980, The statistical prediction of beach changes in Southern California: Jour. Geophys. Res., v. 85, p. 3264–3276.

    Google Scholar 

  • Benson, R. H., 1967, Muscle scar patterns of Pleistocene (Kansan) ostracodes,in Curt Teichert and E. L. Yochelson, (Eds.), Essays in paleontology and stratigraphy: Kansas University Press, Lawrence, Kansas, p. 211–241.

    Google Scholar 

  • Blackith, R. E. and Reyment, R. A., 1971, Multivariate morphometrics: Academic Press, London, 412 p.

    Google Scholar 

  • Bookstein, F. L., 1978, The measurement of biological shape and shape change: Springer-Verlag, Berlin, 191 p.

    Google Scholar 

  • Bookstein, F. L., Strauss, R. E., Humphries, J. M., Chernoff, B. C., Elder, R. L., and Smith, G. R., 1982, A comment upon the uses of Fourier methods in systematics: Systematic Zool., v. 31, p. 85–92.

    Google Scholar 

  • Canfield, D. J. and Anstey, R. L., 1981, Harmonic analysis of cephalopod suture patterns: Jour. Math. Geol., v. 13, p. 23–35.

    Google Scholar 

  • Christopher, R. A. and Waters, J. A., 1974, Fourier analysis as a quantitative descriptor of miosphere shape: Jour. Paleo., v. 48, p. 697–709.

    Google Scholar 

  • Cooley, W. S. and Lohnes, P. R., 1971, Multivariate data analysis: Wiley & Sons, New York, 364 p.

    Google Scholar 

  • Davis, R. E., 1976, Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean: Jour. Phys. Oceanog., v. 6, p. 249–266.

    Google Scholar 

  • Delmet, D. A. and Anstey, R. L., 1974, Fourier analysis of morphological plasticity within an Ordovician bryozoan colony: Jour. Paleo., v. 48, p. 217–226.

    Google Scholar 

  • Ehrlich, R. and Weinberg, B., 1970, An exact method for characterization of grain shape: Jour. Sed. Pet., v. 40, p. 205–212.

    Google Scholar 

  • Ehrlich, R., Orzeck, J., and Weinberg, B., 1974, Detrital quartz as a natural tracer—Fourier grain shape analysis: Jour. Sed. Pet., v. 44, p. 145–150.

    Google Scholar 

  • Fico, C., 1980, Development of ARTHUR II—a fast microprocessor controlled particle shape analyzer: M.S. thesis, University of South Carolina, Columbia, S.C. (unpublished).

    Google Scholar 

  • Gevirtz, J. L., 1976, Fourier analysis of bivalve outlines: implications on evolution and autecology: Jour. Math. Geol., v. 8, p. 151–163.

    Google Scholar 

  • Golub, G. H. and Reinsch, C., 1970, Singular value decomposition and least squares solutions: Numer. Math., v. 14, p. 403–420.

    Google Scholar 

  • Healy-Williams, N. and Williams, D. F., 1981, Fourier analysis of test shape of planktonic foraminifera: Nature, v. 289, p. 485–487.

    Google Scholar 

  • Kaesler, R. L. and Waters, J. A., 1972, Fourier analysis of the ostracode margin: Geol. Soc. Amer. Bull., v. 83, p. 1169–1178.

    Google Scholar 

  • Kennett, J. P., 1968,Globorotalia truncatulinoides as a paleo-oceanographic index: Science, v. 159, p. 1461–1463.

    Google Scholar 

  • Lohmann, G. P. and Carlson, J. J., 1981, Oceanographic significance of Pacific Late Miocene calcareous nannoplankton: Marine Micropaleo., v. 6, p. 553–579.

    Google Scholar 

  • Lohmann, G. P. and Denham, C. R., in press, Eigenshape analysis programs: Comput. Woods Hole Oceanog. Inst., Tech. Rep.

  • Lohmann, G. P. and Malmgren, B. A., in press, Equatorward migration ofGloborotalia truncatulinoides through the Late Pleistocene. Submitted to Paleobio.

  • Lorenz, E. N., 1959, Empirical orthogonal functions and statistical weather prediction: Rept. No. 1, Statistical Forcasting Project, Dept. of Meteorology, M.I.T.

  • Malmgren, B. and Kennett, J. P., 1981, Phyletic gradualism in a Late Cenozoic planktonic foraminiferal lineage; DSDP Site 284, southwest Pacific. Paleobiology, v. 7, p. 230–240.

    Google Scholar 

  • Pielou, E. C., 1969, An introduction to mathematical ecology, John Wiley & Sons, New York, 286 p.

    Google Scholar 

  • Prezbindowski, D. R. and Anstey, R. L., 1978, A Fourier-numerical study of a bryozoan fauna from the Threeforks Formation (Late Devonian) of Montana: Jour. Paleo., v. 52, p. 353–369.

    Google Scholar 

  • Schwarcz, H. P. and Shane, K. C., 1969, Measurement of particle shape by Fourier analysis: Sedimentology, v. 13, p. 213–231.

    Google Scholar 

  • Scott, G. H., 1975, Variation inGloborotalia miozea (Foraminiferida) from the New Zealand Neogene: N. Z. Jour. Geol. Geophys., v. 18, p. 865–880.

    Google Scholar 

  • Scott, G. H., 1980, The value of outline processing in the biometry and systematics of fossils: Paleontology, v. 23, p. 757–768.

    Google Scholar 

  • Scott, G. H., 1981, Upper Miocene biostratigraphy: DoesGloborotalia conomiozea occur in the Messinian? Rev. Espanola Micropaleo, v. 12, p. 489–506.

    Google Scholar 

  • Waters, J. A., 1977, Quantification of shape by use of Fourier analysis: the Mississippian blastoid genusPentremites: Paleobiology, v. 3, p. 288–299.

    Google Scholar 

  • Winant, C. D., Inman, D. L., and Nordstrom, C. E., 1975, Description of seasonal beach changes using empirical eigenfunctions: Jour. Geophys. Res., v. 80, p. 1979–1986.

    Google Scholar 

  • Younker, J. L. and Ehrlich, R., 1977, Fourier biometrics: harmonic amplitudes as multivariate shape descriptors: System Zool., v. 26, p. 336–342.

    Google Scholar 

  • Zahn, C. T. and Roskies, R. Z., 1972, Fourier descriptors for plane closed curves: IEEE Trans. Comput., v. C-21, p. 269–281.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohmann, G.P. Eigenshape analysis of microfossils: A general morphometric procedure for describing changes in shape. Mathematical Geology 15, 659–672 (1983). https://doi.org/10.1007/BF01033230

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01033230

Key words

Navigation