Skip to main content
Log in

ADP-ribosylation factors: a family of ∼20-kDa guanine nucleotide-binding proteins that activate cholera toxin

  • Part IV: Toxin Mono-ADP-ribosylation
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

ADP-ribosylation factors (ARFs) comprise a family of ∼20 kDa guanine nucleotide-binding proteins that were discovered as one of several cofactors required in cholera toxin-catalyzed ADP-ribosylation of G, the guanine nucleotide-binding protein responsible for stimulation of adenylyl cyclase, and was subsequently found to enhance all cholera toxin-catalyzed reactions and to directly interact with, and activate the toxin. ARF is dependent on GTP or its analogues for activity, binds GTP with high affinity in the presence of dimyristoylphosphatidylcholine/cholate and contains consensus sequences for GTP-binding and hydrolysis. Six mammalian family members have been identified which have been classified into three groups (Class I, II, and III) based on size, deduced amino acid sequence identity, phylogenetic analysis and gene structure. ARFs are ubiquitous among eukaryotes, with a deduced amino acid sequence that is highly conserved across diverse species. They have recently been shown to associate with phospholipid and Golgi membranes in a GTP-dependent manner and are involved in regulating vesicular transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ARF:

ADP-ribosylation factor

sARF I and sARF II:

soluble ADP-ribosylation factors purified from bovine brain

mARF:

purified membrane-associated ARF

hARF:

human ARF

bARF:

bovine ARF

yARF:

yeast ARF

ARF:

bacterially-expressed recombinant ARF

gARF:

Giardia ARF

dARF:

Drosophila ARF

G protein:

guanine nucleotide-binding protein

Gs :

G protein responsible for stimulation of adenylyl cyclase

GTPγS:

guanosine-5′-O-(3-thio-triphosphate)

CIAI:

cholera toxin A1 subunit

DMPC:

dimyristoylphosphatidylcholine

SDS:

sodium dodecyl sulfate

References

  1. Gill DM: The arrangement of subunits in cholera toxin. Biochemistry 15: 1242–1248, 1976

    PubMed  Google Scholar 

  2. Gill DM: Mechanism of action of cholera toxin. Adv Cyclic Nucleotide Res 8: 85–118, 1977

    PubMed  Google Scholar 

  3. Moss J, Vaughan M: Participation of guanine nucleotide-binding protein cascade in activation of adenylyl cyclase by cholera toxin (choleragen). In: R. Iyengar and L. Birnbaumer (eds). G. Proteins, Academic Press, San Diego, CA, 1990, pp 179–200

    Google Scholar 

  4. Mekalanos JJ, Collier RJ, Romig WR: Enzymic activity of cholera toxin. II. Relationships to proteolytic processing, disulfide bond reduction, and subunit composition. J Biol Chem 254: 5855–5861, 1979

    PubMed  Google Scholar 

  5. Moss J, Stanley SJ, Lin MC: NAD glycohydrolase and ADP-ribosyltransferase activities are intrinsic to the A1 peptide of choleragen. J Biol Chem 254: 11993–11996, 1979

    PubMed  Google Scholar 

  6. Moss J, Manganiello VC, Vaughan M: Hydrolysis of nicotinamide adenine dinucleotide by choleragen and its A protomer: possible role in the activation of adenylate cyclase. Proc Natl Acad Sci USA 73: 4424–4427, 1976

    PubMed  Google Scholar 

  7. Moss J, Vaughan M: Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J Biol Chem 252: 2455–2457, 1977

    PubMed  Google Scholar 

  8. Mekalanos JJ, Collier RJ, Romig WR: Enzyme activity of cholera toxin. I. New methods of assay and the mechanism of ADP-ribosyl transfer J Biol Chem 254: 5849–5854, 1979

    PubMed  Google Scholar 

  9. Moss J, Vaughan M: Isolation of an avian erythrocyte protein possessing ADP-ribosyltransferase activity and capable of activating adenylate cyclase. Proc Natl Acad Sci USA 75: 3621–3624, 1978

    PubMed  Google Scholar 

  10. Moss J, Stanley SJ, Watkins PA, Vaughan M: ADP-ribosyltransferase activity of mono- and multi-(ADP-ribosylated) choleragen. J Biol Chem 255: 7835–7837, 1980

    PubMed  Google Scholar 

  11. Trepel JB, Chuang D-M, Neff NH: Transfer of ADP-ribose from NAD to choleragen: A subunit acts as a catalyst and acceptor protein. Proc Natl Acad Sci USA 74: 5440–5442, 1977

    PubMed  Google Scholar 

  12. Cassel D, Pfeuffer T: Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci USA 75: 2669–2673, 1978

    PubMed  Google Scholar 

  13. Gill DM, Meren R: ADP-ribosylation of membrane proteins catalyzed by cholera toxin; basis of the activation of adenylate cyclase. Proc Natl Acad Sci USA 75: 3050–3054, 1978

    PubMed  Google Scholar 

  14. Johnson GL, Kaslow HR, Bourne HR: Genetic evidence that cholera toxin substrates are regulatory components of adenylate cyclase. J Biol Chem 253: 7120–7123, 1978

    PubMed  Google Scholar 

  15. Northup JK, Sternweis PC, Smigel MD, Schleifer LS, Ross EM, Gilman AG: Purification of the regulatory component of adenylate cyclase. Proc Natl Acad Sci USA 77: 6516–6520, 1980

    PubMed  Google Scholar 

  16. Finkelstein RA: Cholera. CRC Crit Rev Microbiol 2: 553–623, 1973

    Google Scholar 

  17. Kelley MT: Cholera: a worldwide perspective. Pediat Infect Dis 5: S101-S105, 1986

    Google Scholar 

  18. Gill DM: Involvement of nicotinamide adenine dinucleotide in the action of cholera toxinin vitro. Proc Natl Acad Sci USA 72: 2064–2068, 1975

    PubMed  Google Scholar 

  19. Enomoto K, Gill DM: Requirement for guanosine triphosphate in the activation of adenylate cyclase by cholera toxin. J Supramol Struct 10: 51–60, 1979

    PubMed  Google Scholar 

  20. Moss J, Vaughan M: Choleragen activation of solubilized adenylate cyclase: requirement for GTP and protein activator for demonstration of enzymatic activity. Proc Natl Acad Sci USA 74: 4396–4400, 1977

    PubMed  Google Scholar 

  21. Lin MC, Welton AF, Berman MF: Essential role of GTP in the expression of adenylate cyclase activity after cholera toxin treatment. J Cyclic Nucleotide Res 4: 159–168, 1978

    PubMed  Google Scholar 

  22. Nakaya S, Moss J, Vaughan M: Effects of nucleoside triphosphates on choleragen-activated brain adenylate cyclase. Biochemistry 19: 4871–4874, 1980

    PubMed  Google Scholar 

  23. Enomoto K, Gill DM: Cholera toxin activation of adenylate cyclase. Roles of nucleoside triphosphates and a macromolecular factor in the ADP-ribosylation of the GTP-dependent regulatory component. J Biol Chem 255: 1252–1258, 1980

    PubMed  Google Scholar 

  24. Gill DM, Meren R: A secondary guanyl nucleotide-binding site associated with adenylate cyclase. Distinct nucleotides activate adenylate cyclase and permit ADP-ribosylation by cholera toxin. J Biol Chem 258: 11908–11914, 1983

    PubMed  Google Scholar 

  25. LeVine H III, Cuatrecasas P: Activation of pigeon erythrocyte adenylate cyclase by cholera toxin. Partial purification of an essential macromolecular factor from horse erythrocyte cytosol. Biochim Biophys Acta 672: 248–261, 1981

    PubMed  Google Scholar 

  26. Schleifer LS, Kahn RA, Hanski E, Northup JK, Sternweis PC, Gilman AG: Requirements for cholera toxin-dependent ADP-ribosylation of the purified regulatory component of adenylate cyclase. J Biol Chem 257: 20–23, 1982

    PubMed  Google Scholar 

  27. Pinkett MO, Anderson WB: Plasma membrane-associated component(s) that confer(s) cholera toxin sensitivity to adenylate cyclase. Biochim Biophys Acta 714: 337–343, 1982

    PubMed  Google Scholar 

  28. Gill DM, Woolkalis MJ: [32P]ADP-ribosylation of proteins catalyzod by cholera toxin and related heat-labile enterotoxins. Methods Enzymol 165: 235–245, 1988

    PubMed  Google Scholar 

  29. Schmidt GJ, Huber LJ, Weiter JJ: A-protein catalyzes the ADP-ribosylation of G-protein from cow rod outer segments. J Biol Chem 262: 14333–14336 1987

    PubMed  Google Scholar 

  30. Gill DM, Coburn J: ADP-ribosylation by cholera toxin: functional analysis of a cellular system that stimulates the enzymatic activity of cholera toxin fragment A1. Biochemistry 26: 6364–6371, 1987

    PubMed  Google Scholar 

  31. Woolkalis M, Gill DM, Coburn J: Assay and purification of cytosolic factor required for cholera toxin activity. Methods Enzymol 165: 246–249, 1988

    PubMed  Google Scholar 

  32. Kahn RA, Gilman AG: Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J Biol Chem 259: 6228–6234, 1984

    PubMed  Google Scholar 

  33. Kahn RA, Gilman AG: The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. J Biol Chem 261: 7906–7911, 1986

    PubMed  Google Scholar 

  34. Tsai S-C, Noda M, Adamik R, Moss J, Vaughan M: Enhancement of choleragen ADP-ribosyltransferase activities by guanyl nucleotides and a 19-kDa membrane protein. Proc Natl Acad Sci USA 84: 5139–5142, 1987

    PubMed  Google Scholar 

  35. Tsai S-C, Noda M, Adamik R, Chang PP, Chen H-C, Moss J, Vaughan M: Stimulation of choleragen enzymatic activities by GTP and two soluble proteins purified from bovine brain. J Biol Chem 263: 1768–1772, 1988

    PubMed  Google Scholar 

  36. Noda M, Tsai S-C, Adamik R, Moss J, Vaughan M: Mechanism of cholera toxin activation by a guanine nucleotide-dependent 19 kDa protein. Biochim Biophys Acta 1034: 195–199, 1990

    PubMed  Google Scholar 

  37. Bobak DA, Blizotes MM, Noda M, Tsai S-C, Adamik R, Moss J: Mechanism of activation of cholera toxin by ADP-ribosylation factor (ARF): Both low- and high-affinity interactions of ARF with guanine nucleotides promote toxin activation. Biochemistry 29: 855–861, 1990

    PubMed  Google Scholar 

  38. Tsai S-C, Adamik R, Moss J, Vaughan M: Guanine nucleotide dependent formation of a complex between choleragen (cholera toxin) A subunit and bovine brain ADP-ribosylation factor. Biochemistry 30: 3697–3703, 1991

    PubMed  Google Scholar 

  39. Weiss O, Holden J, Rulka C, Kahn RA: Nucleotide binding and cofactor activities of purified bovine brain and bacterially expressed ADPribosylation factor. J Biol Chem 264: 21066–21072, 1989

    PubMed  Google Scholar 

  40. Kahn RA, Kern FG, Clark J, Gelmann EP, Rulka C: Human ADP-ribosylation factors. A functionally conserved family of GTP-binding proteins. J Biol Chem 266: 2606–2614, 1991

    PubMed  Google Scholar 

  41. Price SR, Welsh CF, Haun RS, Stanley SJ, Moss J, Vaughan M: Effects of phospholipid and GTP on recombinant ADP-ribosylation factors (ARFs). Molecular basis for differences in requirements for activity of mammalian ARFs. J Biol Chem 267: 17766–17772, 1992

    PubMed  Google Scholar 

  42. Tsai S-C, Adamik R, Tsuchiya M, Chang PP, Moss J, Vaughan M: Differential expression during development of ADP-ribosylation factors, 20-kDa guanine nucleotide-binding protein activators of cholera toxin. J Biol Chem 266: 8213–8219, 1991

    PubMed  Google Scholar 

  43. Mishima K, Price SR, Nightingale MS, Kousvelari E, Moss J, Vaughan M: Regulation of ADP-ribosylation factor (ARF) expression. Crossspecies conservation of the developmental and tissue-specific alternative polyadenylation of ARF 4 mRNA. J Biol Chem 267: 24109–24116, 1992

    PubMed  Google Scholar 

  44. Sewell JL, Kahn RA: Sequences of the bovine and yeast ADP-ribosylation factor and comparison to other GTP-binding proteins. Proc Natl Acad Sci USA 85: 4620–4624, 1988

    PubMed  Google Scholar 

  45. Bobak DA, Nightingale MS, Murtagh JJ, Price SR, Moss J, Vaughan M: Molecular cloning, characterization, and expression of human ADP-ribosylation factors: two guanine nucleotide-dependent activators of cholera toxin. Proc Natl Acad Sci USA 86: 6101–6105, 1989

    PubMed  Google Scholar 

  46. Price SR, Nightingale MS, Tsai S-C, Williamson KC, Adamik R, Chen H-C, Moss J, Vaughan M: Guanine nucleotide-binding proteins that enhance choleragen ADP-ribosyltransferase activity: nucleotide and deduced amino acid sequence of an ADP-ribosylation factor cDNA. Proc Natl Acad Sci USA 85: 5488–5491, 1988

    PubMed  Google Scholar 

  47. Monaco L, Murtagh JJ, Newman KB, Tsai S-C, Moss J, Vaughan M: Selective amplification of an mRNA and related pseudogene for a human ADP-ribosylation factor, a guanine nucleotide-dependent protein activator of cholera toxin. Proc Natl Acad Sci USA 87: 2206–2210, 1990

    PubMed  Google Scholar 

  48. Tsuchiya M, Price SR, Tsai S-C, Moss J, Vaughan M: Molecular identification of ADP-ribosylation factor mRNAs and their expression in mammalian cells. J Biol Chem 266: 2772–2777, 1991

    PubMed  Google Scholar 

  49. Peng Z, Calvert I, Clark J, Helman L, Kahn R, Kung H-F: Molecular cloning sequence analysis and mRNA expression of human ADP-ribosylation factor. Biofactors 2: 45–49, 1989

    PubMed  Google Scholar 

  50. Stearns T, Kahn RA, Botstein D, Hoyt MA: ADP-ribosylation factor is an essential protein inSaccharomyces cerevisiae and is encoded by two genes. Mol Cell Biol 10: 6690–6699, 1990

    PubMed  Google Scholar 

  51. Murtagh JJ Jr, Lee F-JS, Deak P, Hall LM, Monaco L, Lee C-M, Stevens LA, Moss J, Vaughan M: Molecular, characterization of a conserved, guanine nucleotide-dependent ADP-ribosylation factor inDrosophila melanogaster. Biochemistry, 31: 6011–6018, 1993

    Google Scholar 

  52. Murtagh JJ Jr, Mowatt MR, Lee C-M, Lee F-JS, Mishima K, Nash TE, Moss J, Vaughan M: Guanine nucleotide-binding proteins in the intestinal parasiteGiardia lamblia. Isolation of a gene encoding an ∼20 kDa ADP-ribosylation factor. J Biol Chem 267: 9654–9662, 1992

    PubMed  Google Scholar 

  53. Tsuchiya M, Price SR, Nightingale MS, Moss J, Vaughan M: Tissues and species distribution of mRNA encoding two ADP-ribosylation factors, 20-kDa guanine nucleotide binding proteins. Biochemistry 28: 9668–9673, 1989

    PubMed  Google Scholar 

  54. Tsai S-C, Haun RS, Tsuchiya M, Moss J, Vaughan M: Isolation and characterization of the human gene for ADP-ribosylation factor 3, a 20-kDa guanine nucleotide-binding protein activator of cholera toxin. J Biol Chem 266: 23053–23059, 1991

    PubMed  Google Scholar 

  55. Lee C-M, Haun RS, Tsai S-C, Moss J, Vaughan M: Characterization of the human gene encoding ADP-ribosylation factor 1, a guanine nucleotide-binding activator of cholera toxin. J Biol Chem 267: 9028–9034, 1992

    PubMed  Google Scholar 

  56. Serventi IM, Cavanaugh E, Moss J, Vaughan M: Characterization of the gene for ADP-ribosylation factor (ARF) 2, developmentally regulated, selectively expressed member of the ARF family of ∼20-kDa guanine nucleotide-binding proteins. J Biol Chem 268: 4863–4864, 1993

    PubMed  Google Scholar 

  57. Haun RS, Moss J, Vaughan M: Characterization of the human ADP-ribosylation factor 3 promoter. Transcriptional regulation of a TATA-less promoter. J Biol Chem 268: 8793–8800, 1993

    PubMed  Google Scholar 

  58. Price SR, Barber A, Moss J: Structure-function relationships of guanine nucleotide-binding proteins. In: J. Moss and M. Vaughan (eds). ADP-ribosylating Toxins and G Proteins: Instights Into Signal Transduction, American Society for Microbiology, Washington, DC, 1990, pp 397–424

    Google Scholar 

  59. Gibbs JB, Sigal IS, Poe M, Scolnick EM: Intrinsic GTPase activity distinguishes normal and oncogenicras p21 molecules. Proc Natl Acad Sci USA 81: 5704–5708, 1984

    PubMed  Google Scholar 

  60. McGrath JP, Capon DJ, Goeddel DV, Levinson AD: Comparative biochemical properties of normal and activated humanras p21 protein. Nature 310: 644–649, 1984

    PubMed  Google Scholar 

  61. Sweet RW, Yokoyama S, Kamata T, Feramisco JR, Rosenberg M, Gross M: The product ofras is a GTPase and the T24 oncogenic mutant is deficient in this activity. Nature 311: 273–275, 1984

    PubMed  Google Scholar 

  62. Tamkun JW, Kahn RA, Kissinger M, Brizuela BJ, Rulka C, Scott MP, Kennison JA: The arflike gene encodes an essential GTP-binding protein inDrosophila. Proc Natl Acad Sci USA 88: 3120–3124, 1991

    PubMed  Google Scholar 

  63. Haun RS, Tsai S-C, Adamik R, Moss J, Vaughan M: Effect of myristoylation on GTP-dependent binding of ADP-ribosylation factor to Golgi. J Biol Chem 268: 7064–7068, 1993

    PubMed  Google Scholar 

  64. Kahn RA, Goddard C, Newkirk M: Chemical and immunological characterization of the 210kDaADP-ribosylation factor of adenylate cyclase. J Biol Chem 263: 8282–8287, 1988

    PubMed  Google Scholar 

  65. Kunz BC, Muczynski KA, Welsh CF, Stanley SJ, Tsai S-C, Adamik R, Chang PP, Moss J, Vaughan M: Characterization of recombinant and endogenous ADP-ribosylation factors synthesized in Sf9 insect cells. Biochemistry 32: 6643–6648, 1993

    PubMed  Google Scholar 

  66. Towler DA, Adams SP, Eubanks SR, Towery DS, Jackson-Machelski E, Glaser L, Gordon JI: Purification and characterization of yeast myristoyl CoA: protein N-myristoyltransferase. Proc Natl Acad Sci USA 84: 2708–2712, 1987

    PubMed  Google Scholar 

  67. Kahn RA, Randazzo P, Serafini T, Weiss O, Rulka C, Clark J, Amherdt M, Roller P, Orci L, Rothman JE: The amino terminus of ADP-ribosylation factor (ARF) is a critical determinant of ARF activities and is a potent and specific inhibitor of protein transport. J Biol Chem 267: 13039–13046, 1992

    PubMed  Google Scholar 

  68. Mishima K, Tsuchiya M, Nightingale MS, Moss J, Vaughan M: ARD 1, a 64-kDa guanine nucleotide-binding protein with a carboxyl-terminal ADR-ribosylation factor domain. J Biol Chem 268: 8801–8807, 1993

    PubMed  Google Scholar 

  69. Stearns T, Willingham MC, Botstein D, Kahn RA: ADP-ribosylation factor is functionally and physically associated with the Golgi complex. Proc Natl Acad Sci USA 87: 1238–1242, 1990

    PubMed  Google Scholar 

  70. Regazzi R, Ullrich S, Kahn RA, Wollheim CB: Redistribution of ADP-ribosylation factor during stimulation of permeabilized cells with GTP analogues. Biochem J 275: 639–644, 1991

    PubMed  Google Scholar 

  71. Walker MW, Bobak DA, Tsai S-C, Moss J, Vaughan M: GTP but not GDP analogues promote association of ADP-ribosylation factors, 20-kDa protein activators of cholera toxin, with phospholipids and PC-12 cell membranes. J Biol Chem 267: 3230–3235, 1992

    PubMed  Google Scholar 

  72. Donaldson JG, Kahn RA, Lippincott-Schwartz J, Klausner RD: Binding of ARF and β-COP to Golgi membranes: Possible regulation by a trimeric G protein. Science 254: 1197–1199, 1991

    PubMed  Google Scholar 

  73. Lippincott-Schwartz J, Yuan LC, Bonifacino JS, Klausner RD: Rapid redistribution of Golgi proteins into the ER in cells treated with Brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56: 801–813, 1989

    PubMed  Google Scholar 

  74. Lippincott-Schwartz J, Donaldson JG, Schweizer A, Berger EG, Hauri H-P, Yuan LC, Klausner RD: Microtubule-dependent retrograde transport of proteins into the ER in the presence of Brefeldin A suggests an ER recycling pathway. Cell 60: 821–836, 1990

    PubMed  Google Scholar 

  75. Serafini T, Orci L, Amherdt M, Brunner M, Kahn RA, Rothman JE: ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67: 239–253, 1991

    PubMed  Google Scholar 

  76. Donaldson JG, Cassel D, Kahn RA, Klausner RD: ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein β-COP to Golgi membranes. Proc Natl Acad Sci USA 89: 6408–6412, 1992

    PubMed  Google Scholar 

  77. Donaldson JG, Finazzi D, Klausner RD: Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 360: 350–352, 1992

    PubMed  Google Scholar 

  78. Helms JB, Rothman JE: Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360: 352–354, 1992

    PubMed  Google Scholar 

  79. Tsai S-C, Adamik R, Haun RS, Moss J, Vaughan M: Differential interaction of ADP-ribosylation factors 1, 3, and 5 with rat brain Golgi membranes. Proc Natl Acad Sci USA 89: 9272–9276, 1992

    PubMed  Google Scholar 

  80. Tsai S-C, Adamik R, Haun RS, Moss J, Vaughan M: Effects of brefeldin A and accessory proteins on association of ADP-ribosylation factors 1, 3, and 5 with Golgi. J Biol Chem 268: 10820–10825, 1993

    PubMed  Google Scholar 

  81. Balch WE, Kahn RA, Schwaninger R: ADP-ribosylation factor is required for vesicular trafficking between the endoplasmic reticulum and thecis-Golgi compartments. J Biol Chem 267: 13053–13061, 1992

    PubMed  Google Scholar 

  82. Lenhard JM, Kahn RA, Stahl PD: Evidence for ADP-ribosylation factor (ARF) as a regulator ofin vitro endosome-endosome fusion. J Biol Chem 267: 13047–13052, 1992

    PubMed  Google Scholar 

  83. Boman AL, Taylor TC, Melançon P, Wilson KL: A role for ADP-ribosylation factor in nuclear vesicle dynamics. Nature 358: 512–514, 1992

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welsh, C.F., Moss, J. & Vaughan, M. ADP-ribosylation factors: a family of ∼20-kDa guanine nucleotide-binding proteins that activate cholera toxin. Mol Cell Biochem 138, 157–166 (1994). https://doi.org/10.1007/BF00928458

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00928458

Key words

Navigation