Skip to main content
Log in

Bacterial sodium ion-coupled energetics

  • Research Articles
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

For many bacteria Na+ bioenergetics is important as a link between exergonic and endergonic reactions in the membrane. This article focusses on two primary Na+ pumps in bacteria, the Na+-translocating oxaloacetate decarboxylase ofKlebsiella pneumoniae and the Na+-translocating F1F0 ATPase ofPropionigenium modestum. Oxaloacetate decarboxylase is an essential enzyme of the citrate fermentation pathway and has the additional function to conserve the free energy of decarboxylation by conversion into a Na+ gradient. Oxaloacetate decarboxylase is composed of three different subunits and the related methylmalonyl-CoA decarboxylase consists of five different subunits. The genes encoding these enzymes have been cloned and sequenced. Remarkable are large areas of complete sequence identity in the integral membrane-bound β-subunits including two conserved aspartates that may be important for Na+ translocation. The coupling ratio of the decarboxylase Na+ pumps depended on\(\Delta \tilde \mu Na^ + \) and decreased from two to zero Na+ uptake per decarboxylation event as\(\Delta \tilde \mu Na^ + \) increased from zero to the steady state level.

InP. modestum,\(\Delta \tilde \mu Na^ + \) is generated in the course of succinate fermentation to propionate and CO2. This\(\Delta \tilde \mu Na^ + \) is used by a unique Na+-translocating F1F0 ATPase for ATP synthesis. The enzyme is related to H+-translocating F1F0 ATPases. The F0 part is entirely responsible for the coupling of ion specificity. A hybrid ATPase formed by in vivo complementation of anEscherichia coli deletion mutant was completely functional as a Na+-ATP synthase conferring theE. coli strain the ability of Na+-dependent growth on succinate. The hybrid consisted of subunits a, c, b, δ and part of α fromP. modestum and of the remaining subunits fromE. coli. Studies on Na+ translocation through the F0 part of theP. modestum ATPase revealed typical transporter-like properties. Sodium ions specifically protected the ATPase from the modification of glutamate-65 in subunit c by dicyclohexylcarbodiimide in a pH-dependent manner indicating that the Na+ binding site is at this highly conserved acidic amino acid residue of subunit c within the middle of the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann R, Ludwig W, Laubinger W, Dimroth P & Schleifer KH (1988) Cloning and sequencing of the gene encoding the β-subunit of the sodium ion translocating ATP synthase ofPropionigenium modestum. FEMS Microbiol. Lett. 65: 253–260

    Google Scholar 

  • Antranikian G & Giffhorn F (1987) Citrate metabolism in anaerobic bacteria. FEMS Microbiol. Rev. 46: 175–198

    Google Scholar 

  • Beatrix B, Bendrat K, Rospert S & Buckel W (1990) The biotin-dependent sodium ion pump glutaconyl-CoA decarboxylase fromFusobacterium nucleatum. Arch. Microbiol. 154: 362–369

    PubMed  Google Scholar 

  • Buckel W & Semmler (1983) Purification, characterization and reconstitution of glutaconyl-CoA decarboxylase, a biotin-dependent sodium pump from anaerobic bacteria. Eur. J. Biochem. 136: 427–434

    PubMed  Google Scholar 

  • Dibrov PA, Kostyrko VA, Lazarova RL, Skulachev VP & Smirnova IA (1986) Na+-dependent motility and modes of membrane energization in the marine alkalotolerantVibrio alginolyticus. Biochim. Biophys. Acta 850: 449–457

    PubMed  Google Scholar 

  • Dimroth P & Hilpert W (1984) Carboxylation of pyruvate and acetyl-CoA by reversal of the Na+ pumps oxaloacetate decarboxylase and methylmalonyl-CoA decarboxylase. Biochemistry 23: 5360–5366

    Google Scholar 

  • Dimroth P & Thomer A (1983) Subunit composition of oxaloacetate decarboxylase and characterization of the α-chain as carboxyl-transferase. Eur. J. Biochem. 137: 107–112

    PubMed  Google Scholar 

  • Dimroth P & Thomer A (1986) Citrate transport inKlebsiella pneumoniae. Biol. Chem. Hoppe-Seyler 367: 813–823

    PubMed  Google Scholar 

  • Dimroth P & Thomer A (1989) A primary respiratory Na+ pump of an anaerobic bacterium: the Na+-dependent NADH: quinone oxidoreductase ofKlebsiella pneumoniae. Arch. Microbiol. 151: 439–444

    PubMed  Google Scholar 

  • Dimroth P & Thomer A (1990) Solubilization and reconstitution of the Na+-dependent citrate carrier ofKlebsiella pneumoniae. J. Biol. Chem. 265: 7721–7724

    PubMed  Google Scholar 

  • Dimroth P & Thomer A (1992) The sodium ion pumping oxaloacetate decarboxylase ofKlebsiella pneumoniae. Metal ion content, inhibitors and proteolytic degradation studies. FEBS Lett. 300: 67–70

    PubMed  Google Scholar 

  • Dimroth P & Thomer A (1993) On the mechanism of sodium ion translocation by oxaloacetate decarboxylase ofKlebsiella pneumoniae. Biochemistry 31: 1734–1739

    Google Scholar 

  • Dimroth P (1980) A new sodium transport system energized by the decarboxylation of oxoaloacetate. FEBS Lett. 122: 234–236

    PubMed  Google Scholar 

  • Dimroth P (1982a) The robe of biotin and sodium in the decarboxylation of oxaloacetate by the membrane-bound oxaloacetate decarboxylase fromKlebsiella aerogenes. Eur. J. Biochem. 121: 435–441

    PubMed  Google Scholar 

  • Dimroth P (1982b) The generation of an electrochemical gradient of sodium ions upon decarboxylation of oxaloacetate by the membrane-bound and Na+-activated oxaloacetate decarboxylase fromKlebsiella aerogenes. Eur. J. Biochem. 121: 443–449

    PubMed  Google Scholar 

  • Dimroth P (1987) Sodium ion transport decarboxylases and other aspects of sodium cycling in bacteria. Microbiol. Rev. 51: 320–340

    PubMed  Google Scholar 

  • Dimroth P (1988) The role of vitamines and their carrier proteins in citrate fermentation. In: Kleinkauf H, Döhren H & Jaenicke L (Eds) The Roots of Modern Biochemistry (pp 191–204) Walter de Gruyter, Berlin

    Google Scholar 

  • Dimroth P (1990) Mechanisms of sodium transport in bacteria. Phil. Trans. R. Soc. Lond. B 326: 465–477

    Google Scholar 

  • Dimroth P (1993) Na+ extrusion coupled to decarboxylation reactions: In: Bakker EP (Ed) Akali Cation Transport Systems in Prokaryotes (pp 77–100) CRC Press, Boca Raton

    Google Scholar 

  • Dimroth P (1993) The Na+-translocating ATP-synthetase fromPropionigenium modestum. In: Bakker EP (Ed) Akali Cation Transport Systems in Prokaryotes (pp 139–154) CRC Press, Boca Raton

    Google Scholar 

  • Efiok BJS & Webster DA (1990) A cytochrome that can pump sodium ion. Biochem. Biophys. Res. Commun. 173: 370–375

    Google Scholar 

  • Esser U, Krumholz LR & Simoni RD (1990) Nucleotide sequence of the F0 subunits of the sodium dependent F1F0 ATPase ofPropionigenium modestum. Nucleic Acids Res. 18: 5887

    Google Scholar 

  • Gerike U & Dimroth P (1993) N-terminal amino acid sequences of the subunits of the Na+-translocating F1F0 ATPase fromPropionigenium modestum. FEBS Lett. 316: 89–92

    PubMed  Google Scholar 

  • Heise R, Müller V & Gottschalk G (1992) Presence of a sodium-translocating ATPase in membrane vesicles of the homoacetogenic bacteriumAcetobacterium woodii. Eur. J. Biochem. 206: 553–557

    Google Scholar 

  • Hilpert W, Schink B & Dimroth P (1984) Life by a new decarboxylation-dependent energy conservation mechanism with Na+ as coupling ion. EMBO J. 3: 1665–1670

    Google Scholar 

  • Hilpert W & Dimroth P (1983) Purification and characterization of a new sodium transport decarboxylase. Methylmalonyl-CoA decarboxylase fromVeillonella alcalescens. Eur. J. Biochem. 132: 579–587

    Google Scholar 

  • Hilpert W & Dimroth P (1984) Reconstitution of Na+ transport from purified methylmalonyl-CoA decarboxylase and phospholipid vesicles. Eur. J. Biochem 138: 579–583

    PubMed  Google Scholar 

  • Hilpert W & Dimroth P (1991) On the mechanism of sodium ion translocation by methylmalonyl-CoA decarboxylase fromVeillonella alcalescens. Eur. J. Biochem. 195: 79–86

    PubMed  Google Scholar 

  • Hirota H & Imae Y (1983) Na+-driven flagellar motors of an alkaliphilic Bacillus strain YN-1. J. Biol. Chem. 258: 10577–10581

    PubMed  Google Scholar 

  • Huder J & Dimroth P (1993) Sequence of the sodium ion pump methylmalonyl-CoA decarboxylase fromVeillonella parvula. J. Biol. Chem. 268: 24564–24571

    Google Scholar 

  • Kaim G, Ludwig W, Dimroth P & Schleifer KH (1990) Sequence of subunits a and b of the sodium ion translocating adenosine triphosphate synthase ofPropionigenium modestum. Nucleic Acids Res. 18: 6697

    PubMed  Google Scholar 

  • Kaim G, Ludwig W, Dimroth P & Schleifer KH (1992) Cloning, sequencing andin vivo expression of genes encoding the F0 part of the sodium-ion-dependent ATP synthase ofPropionigenium modestum inEscherichia coli. Eur. J. Biochem. 207: 463–470

    PubMed  Google Scholar 

  • Kaim G & Dimroth P (1993) Formation of a functionally active sodium-translocating hybrid F1F0 ATPase inEscherichia coli by homologous recombination. Eur. J. Biochem. 218: 937–944

    Google Scholar 

  • Ken-Dror S, Lanyi JK, Schobert B, Silver B & Avi-Dor Y (1986) An NADH: quinone oxidoreductase of the halotolerant bacterium Ba1 is specifically dependent on sodium ions. Arch. Biochem. Biophys. 244: 766–772

    Google Scholar 

  • Kluge C & Dimroth P (1992) Studies on Na+ and H+ translocation through the F0 part of the Na+-translocating F1F0 ATPase fromPropionigenium modestum: discovery of a membrane potential dependent step. Biochemistry 31: 12665–12672

    Google Scholar 

  • Kluge C & Dimroth P (1993a) Kinetics of inactivation of the F1F0 ATPase ofPropionigenium modestum by dicyclohexylcarbodiimide in relationship to H+ and Na+ concentration: probing the binding site for the coupling ions. Biochemistry 31: 10378–10386

    Google Scholar 

  • Kluge C & Dimroth P (1993b) Specific protection by Na+ or Li+ of the F1F0 ATPase ofPropionigenium modestum from the reaction with dicyclohexylcarbodiimide. J. Biol. Chem. 268: 14557–14560

    PubMed  Google Scholar 

  • Kluge G, Laubinger W & Dimroth P (1992) The Na+-translocating ATPase ofPropionigenium modestum. Trans. Biochem. Soc. 20: 572–577

    Google Scholar 

  • Laubinger W, Deckers-Hebestreit G, Alterndorf K & Dimroth P (1990) A hybrid adenosinetriphosphatase composed of F1 ofEscherichia coli and F0 ofPropionigenium modestum is a functional sodium ion pump. Biochemistry 29: 5458–5463

    PubMed  Google Scholar 

  • Laubinger W & Dimroth P (1987) Characterization of the Na+-stimulated ATPase ofPropionigenium modestum as an enzyme of the F1F0 type. Eur. J. Biochem. 168: 475–480

    PubMed  Google Scholar 

  • Laubinger W & Dimroth P (1988) Characterization of the ATP synthase ofPropionigenium modestum as a primary sodium pump. Biochemistry 27: 7531–7537

    Google Scholar 

  • Laubinger W & Dimroth P (1989) The sodium ion translocating adenosinetriphosphatase ofPriopionigenium modestum pumps protons at low sodium ion concentrations. Biochemistry 28: 7194–7198

    PubMed  Google Scholar 

  • Laußermair E, Schwarz E, Oesterhelt D, Reinke H, Beyreuther K & Dimroth P (1989) The sodium ion translocating oxaloacetate decarboxylase ofKlebsiella pneumoniae. Sequence of the integral membrane-bound subunits β and γ. J. Biol. Chem. 264: 14710–14715

    PubMed  Google Scholar 

  • Ludwig W, Kaim G, Laubinger W, Dimroth P, Hoppe J & Schleifer KH (1990) Sequence of subunit c of the sodiumion translsocating adenosine triphosphate synthase ofPropionigenium modestum. Eur. J. Biochem. 193: 395–399

    Google Scholar 

  • Mitchell P (1974) A chemiosmotic molecular mechanism for protontranslocating adenosine triphosphatases. FEBS Lett. 43: 189–194

    PubMed  Google Scholar 

  • Müller V & Gottschalk G (1993) Na+ translocation in the course of methanogenesis from methanol or formaldehyde. In: Bakker EP (Ed) Alkali Cation Transport Systems in Prokaryotes (pp 155–177) CRC Press, Boca Raton

    Google Scholar 

  • Padan E & Suldiner S (1993) Na+ transport systems in prokaryotes. In: Bakker EP (Ed) Alkali Cation Transport Systems in Prokaryotes (pp 3–24) CRC Press, Boca Raton

    Google Scholar 

  • Pfenninger-Li XD & Dimroth P (1992) NADH formation by Na+-coupled reversed electron transfer inKlebsiella pneumoniae. Mol. Microbiol. 6: 1943–1948

    PubMed  Google Scholar 

  • Schönheit P (1993) The role of Na+ in the first step of CO2 reduction to methane in methanogenic bacteria. In: Bakker EP (Ed) Alkali Cation Transport Systems in Prokaryotes (pp 179–202) CRC Press, Boca Raton

    Google Scholar 

  • Schuldiner S & Padan E (1993) Na+/H+ antiporters inEscherichia coli: In: Bakker EP (Ed) Alkali Cation Transport Systems in Prokaryotes (pp 25–51) CRC Press, Boca Raton

    Google Scholar 

  • Schwarz E, Oesterhelt D, Reinke H, Beyreuther K & Dimroth P (1988) The sodium translocating oxaloacetate decarboxylase ofKlebsiella pneumoniae. Sequence of the biotin-containing α-subunit and relationship to other biotin-containing enzymes. J. Biol. Chem. 263: 9640–9645

    Google Scholar 

  • Schwarz E & Oesterhelt D (1985) Cloning and expression ofKlebsiella pneumoniae genes coding for citrate transport and fermentation. EMBO J. 4: 1599–1603

    PubMed  Google Scholar 

  • Speelmans G, Poolman B, Abee T & Konings WL (1993) Energy transduction in the thermophilic anaerobic bacteriumClostridium fervidus is exclusively coupled to sodium ions. Proc. Natl. Acad. Sci. USA 90: 7975–7979

    Google Scholar 

  • Thauer RK, Jungermann K & Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100–180

    PubMed  Google Scholar 

  • Tokuda H (1993) The Na+ cycle inVibrio alginolyticus. In: Bakker EP (Ed) Alkali Cation Transport Systems in Prokaryotes (pp 125–138) CRC Press, Boca Raton

    Google Scholar 

  • Tokuda H & Unemoto T (1984) Na+ is translocated at NADH: quinone oxidoreductase segment in the respiratory chain ofVibrio alginolyticus. J. Biol. Chem. 259: 7785–7790

    PubMed  Google Scholar 

  • van der Rest M., Siewe R, Abee T, Schwarz E, Oesterhelt D & Konings WN (1992) Nucleotide sequence and functional properties of a sodium-dependent citrate transport system fromKlebsiella pneumoniae. J. Biol. Chem. 267: 8971–8976

    PubMed  Google Scholar 

  • Wifling K & Dimroth P (1989) Isolation and characterization of oxaloacetate decarboxylase ofSalmonella typhimurium, a sodium ion pump. Arch. Microbiol. 152: 584–588

    PubMed  Google Scholar 

  • Woehlke G, Laußermair E, Schwarz E, Oesterhelt D, Reinke H, Beyreuther K & Dimroth P (1992b) Sequence of the β-subunit of oxaloacetate decarboxylase fromKlebsiella pneumoniae: a correction of the C-terminal part. J. Biol. Chem. 267: 22804–22805

    Google Scholar 

  • Woehlke G, Wifling K & Dimroth P (1992a) Sequence of the sodium ion pump oxaloacetate decarboxylase fromSalmonella typhimurium J. Biol. Chem. 267: 22798–22803

    Google Scholar 

  • Yamato I & Anraku Y (1993) Na+/substrate symport in prokaryotes: In: Bakker EP (Ed) Akali Cation Transport Systems in Prokaryotes (pp 53–76) CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimroth, P. Bacterial sodium ion-coupled energetics. Antonie van Leeuwenhoek 65, 381–395 (1994). https://doi.org/10.1007/BF00872221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00872221

Key words

Navigation