Skip to main content
Log in

A lateral line analogue in cephalopods: water waves generate microphonic potentials in the epidermal head lines ofSepia andLolliguncula

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Many cephalopods have lines of ciliated cells on their head and arms. In the cuttlefishSepia and the squidLolliguncula, electrophysiological recordings clearly identify these epidermal lines as an invertebrate analogue to the mechanoreceptive lateral lines of fish and aquatic amphibians and thus as another example of convergent evolution between a sophisticated cephalopod and vertebrate sensory system. Stimulation of the epidermal lines with local water displacements, generated by a vibrating sphere, causes receptor potentials that have many features known from lateral line microphonic potentials. The minimal threshold of the head lines is 0.2 μm peak-to-peak water displacement (calculated at the skin surface) at 75–100 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baglioni S (1910) Zur Kenntnis der Leistungen einiger Sinnesorgane (Gesichtssinn, Tastsinn und Geruchssinn) und des Zentralnervensystems der Zephalopoden und Fische. Z Biol 53:255–286

    Google Scholar 

  • Blaxter JHS (1987) Structure and development of the lateral line. Biol Rev 62:471–514

    Google Scholar 

  • Bleckmann H (1986) The role of the lateral line in fish behavior. In: Pitcher TJ (ed) The behaviour of teleost fish. Croom Helm, London Sydney, pp 177–202

    Google Scholar 

  • Bleckmann H, Topp G (1981) Surface wave sensitivity of the lateral line system of the topminnowAplocheilus lineatus. Naturwissenschaften 68:624–625

    Google Scholar 

  • Bleckmann H, Jørgensen JM, Bullock TH (1987) The lateral line mechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray,Platyrhinoidis triseriata (Elasmobranchii). J Comp Physiol A 161:67–84

    Google Scholar 

  • Budelmann BU (1980) Equilibrium and orientation in cephalopods. Oceanus 23:34–43

    Google Scholar 

  • Budelmann BU (in press) Hydrodynamic receptor systems in invertebrates. In: Coombs S, Görner P, Münz H eds Neurobiology and evolution of the lateral line system. Springer, Berlin Heidelberg New York

  • Budelmann BU, Young JZ (1984) The statocyst-oculomotor system ofOctopus vulgaris: extraocular eye muscles, eye muscle nerves, statocyst nerves and the oculomotor centre in the central nervous system. Phil Trans R Soc Lond B 306:159–189

    Google Scholar 

  • Budelmann BU, Sachse M, Staudigl M (1987) The angular acceleration receptor system ofOctopus vulgaris: morphometry, ultrastructure, and neuronal and synaptic organization. Phil Trans R Soc Lond B 315:305–343

    Google Scholar 

  • Denton EJ, Gray JAB (1988) Mechanical factors in the excitation of the lateral lines of fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York, pp 595–617

    Google Scholar 

  • Dijkgraaf S (1963a) The functioning and significance of the lateral line organs. Biol Rev 38:51–105

    Google Scholar 

  • Dijkgraaf S (1963b) Versuche über Schallwahrnehmung bei Tintenfischen. Naturwissenschaften 50:50

    Google Scholar 

  • Elepfandt A, Wiedemer L (1987) Lateral-line response to water surface waves in the clawed frog,Xenopus laevis. J Comp Physiol A 160:667–682

    Google Scholar 

  • Flock Å (1965) Electron microscopic and electrophysiological studies on the lateral line canal organ. Acta Otolaryngol [Suppl] 199:1–90

    Google Scholar 

  • Görner P (1963) Untersuchungen zur Morphologie und Elektrophysiologie des Seitenlinienorgans vom Krallenfrosch (Xenopus laevis Daudin). Z Vergl Physiol 47:316–338

    Google Scholar 

  • Hanlon RT, Budelmann BU (1987) Why cephalopods are probably not ‘deaf.’ Am Nat 129:312–317

    Google Scholar 

  • Hanlon RT, Hixon RF, Hulet WH (1983) Survival, growth, and behavior of the loliginid squidsLoligo plei, Loligo pealei, andLolliguncula brevis (Mollusca: Cephalopoda) in closed sea water systems. Biol Bull 165:637–685

    Google Scholar 

  • Harris GG, Bergeijk WA van (1962) Evidence that the lateral line organ responds to near field displacements of sound sources in water. J Acoust Soc Am 34:1831–1841

    Google Scholar 

  • Jielof R, Spoor A, Vries HL de (1952) The microphonic activity of the lateral line. J Physiol (Lond) 116:137–157

    Google Scholar 

  • Josephson RK (1960) The response of a hydroid to weak waterborne disturbances. J Exp Biol 38:17–27

    Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York, pp 83–130

    Google Scholar 

  • Karlsen HE, Sand O (1987) Selective and reversible blocking of the lateral line in freshwater fish. J Exp Biol 133:249–262

    Google Scholar 

  • Kroese AB, Zalm JM van der, Bercken J van den (1980) Extracellular receptor potentials from the lateral line organ ofXenopus laevis. J Exp Biol 86:63–77

    Google Scholar 

  • Maniwa Y (1976) Attraction of bony fish, squid and crab by sound. In: Schuijf A, Hawkins AD (eds) Sound reception in fish. Elsevier, Amsterdam, pp 271–283

    Google Scholar 

  • Montgomery JC, MacDonald JA (1987) Sensory tuning of lateral line receptors in antartic fish to the movements of planktonic prey. Science 235:195–196

    Google Scholar 

  • Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fishSarotherodon niloticus L. J Comp Physiol A 157:555–568

    Google Scholar 

  • Naef A (1928) Die Cephalopoden. Embryologie. Fauna Flora Golf Neapel 35:1–357

    Google Scholar 

  • Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47:241–307

    Google Scholar 

  • Sand O (1975) Effects of different ionic environments on the mechano-sensitivity of lateral line organs in the mudpuppy. J Comp Physiol 102:27–42

    Google Scholar 

  • Sand O (1984) Lateral line systems. In: Bolis L, Keynes RD, Maddrell SHP (eds) Comparative physiology of sensory systems. Cambridge University Press, Cambridge, pp 3–32

    Google Scholar 

  • Späth M, Schweickert W (1977) The effect of metacaine (MS222) on the activity of the efferent and afferent nerves in the teleost lateral line system. Arch Pharmacol 297:9–16

    Google Scholar 

  • Sundermann G (1983) The fine structure of epidermal lines on arms and head of postembryonicSepia officinalis andLoligo vulgaris (Mollusca, Cephalopoda). Cell Tissue Res 232:669–677

    Google Scholar 

  • Sundermann-Meister G (1978) Ein neuer Typ von Cilienzellen in der Haut von spätembryonalen und juvenilenLoligo vulgaris (Mollusca, Cephalopoda). Zool Jahrb Abt Anat Ontog Tiere 99:493–499

    Google Scholar 

  • Wells MJ, Wells J (1956) Tactile discrimination and the behavior of blindOctopus. Publ Staz Zool Napoli 28:94–126

    Google Scholar 

  • Williamson R, Budelmann BU (1985) The response of theOctopus angular acceleration receptor system to sinusoidal stimulation. J Comp Physiol A 156:403–412

    Google Scholar 

  • Young JZ (1960) The statocysts ofOctopus vulgaris. Proc R Soc Lond B 152:3–29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budelmann, B.U., Bleckmann, H. A lateral line analogue in cephalopods: water waves generate microphonic potentials in the epidermal head lines ofSepia andLolliguncula . J. Comp. Physiol. 164, 1–5 (1988). https://doi.org/10.1007/BF00612711

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00612711

Keywords

Navigation