Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 48))

Abstract

For a long time it has been recognized that Einstein’s theory of general relativity is very likely the most elegant theoretical framework in modern physics. However, all conceivable effects predicted by this theory and observable inside our own solar system are largely negligible and could be taken into account by a simple ‘tabulation’ of the correction factors from the traditional Newtonian physics. If these observable effects were found to be so negligible in the entire Universe, the relevance of general relativity, despite its mathematical elegance, would certainly have been very limited. However, it has become more and more clear since the pioneering work of Landau [1], Chandrasekhar [2], Baade and Zwicky [3] that to properly describe the processes occurring at the late stages of evolution of a star after all the sources of its thermo­nuclear energy have been exhausted, a fully relativistic theory of gravity is needed and very large deviations from a Newtonian approach are to be expected. Then the process of gravitational collapse appears to be the natural testing ground where one may probe some of the most novel and unique predictions of Einstein’s theory. From an astrophysical point of view, this process is also of the greatest relevance since it repre­sents energetically, by far the most important part of the life of a star. (See Section 7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Landau, L.: Phys. Z. Soviet 1, 285 (1932).

    MATH  Google Scholar 

  2. Chandrasekhar, S.: Phil. Mag. 7, 63 (1929). Also Monthly Notices Roy. Astron. Soc. 91, 456 (1931).

    Google Scholar 

  3. Baade, W. and Zwicky, F.: Phys. Rev. 45, 138 (1934).

    Google Scholar 

  4. Staelin, D. H. and Reifenstein, E. C.: Science 162, 1481 (1968).

    ADS  Google Scholar 

  5. For a detailed account see e.g. Shklovski, J. S.: Supernovae, New York, 1968.

    Google Scholar 

  6. Locke, W. J., Disney, M. J., and Taylor, D. J.: Nature 221, 525 (1969).

    ADS  Google Scholar 

  7. Gold, T.: Nature 218, 731 (1968).

    ADS  Google Scholar 

  8. Fritz, G., Henry, R. C., Meekins, J. F., Chubb, T. A., and Friedman, H.: Science 164, 709 (1969).

    ADS  Google Scholar 

  9. Richards, D. W. and Cornelia, J. M.: Nature 222, 551 (1969).

    ADS  Google Scholar 

  10. For a detailed treatment of the magnetic field of a rotating star, see Deutsh, A.: Ann. Astrophys. 18,1 (1955). These general equations have been applied to a rotating neutron star by Pacini, F.: Nature b, 145 (1968).

    Google Scholar 

  11. For an early suggestion of the relevance of the rotational energy of a neutron star in the energetics of the Crab Nebula, see Wheeler, J. A.: Ann. Rev. Astron. Astrophys. 4, 393 (1966). See also Finzi, A. and Wolf, R. A.: Astrophys. J. Letters 155, L107 (1969).

    Google Scholar 

  12. Oppenheimer, J. R. and Serber, R.: Phys. Rev. 54, 540 (1938).

    ADS  Google Scholar 

  13. Oppenheimer, J. R. and Volkoff, G. M.: Phys. Rev. 55, 374 (1939).

    ADS  MATH  Google Scholar 

  14. Oppenheimer, J. R. and Snyder, H.: Phys. Rev. 56, 455 (1939).

    ADS  MATH  Google Scholar 

  15. This point has been extensively considered and a complete proof of the validity of using an equation of state has been given by Ruffini, R. and Bonazzola, S.: Phys. Rev. 187, 1767 (1969). Instead of using the fluid approximation, the neutron star is there described as a system of many self gravitating fermions at zero temperature by solving a second quantized Dirac field in the curved background generated by the average matter distribution. This self consistent Hartree- Fock approach is proved to be completely equivalent to the approximation of a perfect fluid with locally determined equation of state in the range of nuclear densities considered in neutron star models. A summary on the possible effects of alternative theories of gravity in the computation of the equilibrium configuration of a neutron star has been given in Ruffini, R. and Wheeler, J. A.: in H. V. Hardy (ed.), Cosmology from Space platform, ESRO book SP52, Paris, 1971. Recently Wagoner, R. V. and Malone, R. C.: Astrophys. J. Letters 189, L75 (1974), have purported large effects of the gravitational theory used in the computation of the equilibrium configuration of a neutron star. The validity of their treatment, however, is cast in doubt since it leads to a direct violation of the conservation law of the momentum and energy of an isolated system and also they are mistakes in the field equations they have used.

    Google Scholar 

  16. See e.g. Ambartsumyan, V. A. and Saakyan, G. S.: Soviet Astron. AJ 5, 601 (1962) and 6, 601 (1961). See also Cameron, A. G. W., Cohen, J. H., Langer, W. D., and Rosen, L. R.: Astrophys. Space Sci. 6, No. 2, 228 (1970) and references mentioned there.

    Google Scholar 

  17. See e.g. Ruffini, R. in B. and C. DeWitt (ed.), Black Holes, Gordon and Breach Publ., New York- London, 1973.

    Google Scholar 

  18. See e.g. Pandharipande, V. R. in Proceedings of the 1973 Solvay Meeting in Astrophysics.

    Google Scholar 

  19. Hagedorn, R.: Nuovo Cimento Suppl. 3, 147 (1965).

    Google Scholar 

  20. Hagedorn, R.: Nuovo Cimento 56 A, 1027 (1968).

    ADS  Google Scholar 

  21. Hagedorn, R.: Astron. and Astrophys. 5, 184 (1970).

    ADS  MATH  Google Scholar 

  22. Hagedorn, R.: CERN Lecture Notes - 71–72.

    Google Scholar 

  23. Fermi, E.: Progr. Theor. Phys. 5, 570 (1950).

    MathSciNet  ADS  Google Scholar 

  24. Ruderman, M.: Phys. Rev. Letters 27, 1306 (1971) and references mentioned there.

    ADS  Google Scholar 

  25. Dyson, F.: Ann. Phys. 63, 1, 1971. See also Witten, T.: Astron, Astrophys. J. 188, 615 (1974).

    Google Scholar 

  26. Baym, G. and Pines, D.: Ann. Phys. 66, 816 (1971) and references mentioned there.

    Google Scholar 

  27. Ruderman, M.: Nature 225, 838 (1970).

    ADS  Google Scholar 

  28. Smoluchowsky, R.: Phys. Rev. Letters 24, 923 (1970).

    ADS  Google Scholar 

  29. Rhoades, C.: Ph. D. Thesis, Princeton University, 1971, unpublished.

    Google Scholar 

  30. Observed change in the period of the Vela Pulsar, PSR0833-45 of ΔP =2.08 x 10-7 s, Reichley P. E. and Douris G. S.: Nature 222, 229 (1969).

    Google Scholar 

  31. Observed change in the period of the Crab Nebula Pulsar, NP0532 of ΔP ~ 0.3 x 10-4s, Boynton, P. E., Groth, E. J., Hutchinson, D. P., Nanos, G. R., Partridge, R. B., and Wilkinson, D. T.: Astrophys. J. Letters 175, 217 (1972).

    Google Scholar 

  32. Rhoades, C. and Ruffini, R.: Phys. Rev. Letters 32, 324 (1974).

    ADS  Google Scholar 

  33. For an up to date presentation of the status of this topic see Bardeen, J., Carter, B., Gursky, H., Hawking, S., Novikov, I., Ruffini, R., and Thorne, K.: in B. and C. DeWitt (eds.), Black Holes, Gordon and Breach, 1973.

    Google Scholar 

  34. For an up to date presentation of the status of this topic see Bardeen, J., Carter, B., Gursky, H., Hawking, S., Novikov, I., Ruffini, R., and Thorne, K.: in B. and C. DeWitt (eds.), Black Holes, Gordon and Breach, 1973.

    Google Scholar 

  35. Christodoulou, D.: Phys. Rev. Letters 25, 1596 (1970).

    ADS  Google Scholar 

  36. Christodoulou, D. and Ruffini, R.: Phys. Rev. 4, 3442 (1971).

    Google Scholar 

  37. That a black hole can never increase its parameters L and e such as to have L 2 /m 2 + e 2 > m 2 by accretion of test particles has explicitly been shown by Christodoulou, D.: Ph. D. Thesis, Princeton University, 1971, unpublished.

    Google Scholar 

  38. Denardo, G. and Ruffini, R.: Phys. Letters 45B, 259 (1973).

    ADS  Google Scholar 

  39. Denardo, G., Hively, C., and Ruffini, R.: Phys. Letters 49B, 185 (1974).

    Google Scholar 

  40. Christodoulou, D. and Ruffini, R.: On the Energetics of Magnetic Black Hole, Preprint Institute for Advances Study, February 1971.

    Google Scholar 

  41. Penrose, R. and Floyd, R.: Nature 229, 193 (1971).

    Google Scholar 

  42. Ruffini, R. and Wheeler, J. A.: in H. V. Hardy (ed.), Cosmology from Space Platform, ESRO book SP52, Paris, 1971.

    Google Scholar 

  43. Hawking, S.: Phys. Rev. Letters 26, 1344 (1971).

    ADS  Google Scholar 

  44. Hanni, S. and Ruffini, R.: Phys. Rev. 8, 3259 (1973).

    ADS  Google Scholar 

  45. Regge, T. and Wheeler, J. A.: Phys. Rev. 108, 1063 (1957).

    MathSciNet  ADS  MATH  Google Scholar 

  46. Zerilli, F.: Phys. Rev. D2, 2141 (1970).

    MathSciNet  ADS  MATH  Google Scholar 

  47. Zerilli, F.: Phys. Rev. Letters 24, 737 (1970).

    ADS  Google Scholar 

  48. Zerilli, F.: J. Math. Phys. 11, 2203 (1970).

    MathSciNet  ADS  Google Scholar 

  49. Davis, M. and Ruffini, R.: Nuovo Cimento Letters 2, 1165 (1971).

    ADS  Google Scholar 

  50. Davis, M., Ruffini, R., Press, W., and Price, R.: Phys. Rev. Letters 27, 1466 (1971).

    ADS  Google Scholar 

  51. Davis, M., Ruffini, R., and Tiomno, J.: Phys. Rev. 5, 2932 (1972).

    ADS  Google Scholar 

  52. Ruffini, R.: Phys. Rev. D7, 972, (1973).

    ADS  Google Scholar 

  53. Misner, C. W.: Phys. Rev. Letters 28, 994 (1972).

    ADS  Google Scholar 

  54. Misner, C. W., Breuer, R. A., Brill, D. R., Chrzanovski, P. L., Hughes III, H. G., and Pereira, C. M.: Phys. Rev. Letters 28, 998 (1972).

    ADS  Google Scholar 

  55. Davis, M., Ruffini, R., Tiomno, J., and Zerilli, F.: Phys. Rev. Letters 28, 1352 (1972).

    ADS  Google Scholar 

  56. Ruffini, R. and Zerilli, F.: submitted to Phys. Rev. See also Appendix 2.5 in Reference 17.

    Google Scholar 

  57. Haxton, W. and Ruffini, R.: submitted to Annals of Phys.

    Google Scholar 

  58. Ruffini, R.: Phys. Letters 41B3, 334 (1972).

    Google Scholar 

  59. Johnston, M., Ruffini, R., and Zerilli, F.: Phys. Letters B49, 185 (1974). See also Reference 58.

    Google Scholar 

  60. Partridge, R. B. and Ruffini, R.: Gravitational Waves and a Search for the Associated Microwave Radiation, Gravity Research Foundation, Third Award Essay on Gravitation, 1970.

    Google Scholar 

  61. Zerilli, F.: Phys. Rev. 9, 860 (1974).

    ADS  Google Scholar 

  62. Johnston, M., Ruffini, R., and Zerilli, F.: Phys. Rev. Letters 31, 1317 (1973).

    ADS  Google Scholar 

  63. Johnston, M., Ruffini, R., and Peterson, M.: Nuovo Cimento Letters 9, 217 (1974).

    ADS  Google Scholar 

  64. Ruffini, R. and Treves, A.: Astrophys. Letters 13, 109 (1973).

    ADS  Google Scholar 

  65. See Partridge, R. B.: this volume, p. 29.

    Google Scholar 

  66. Christodoulou, D. and Ruffini, R.: ‘On the Electrodynamics of Collapsed Objects’, see Appendix 4.2 in Reference 17.

    Google Scholar 

  67. For the effective potentials of uncharged particles in Kerr and Schwarzschild geometry, see Reference 39. See also Wilkins, D.: Phys. Rev. D5, 814 (1972).

    Google Scholar 

  68. Johnston, M. and Ruffini, R.: ‘On the Generalized Wilkins Effect’, Phys. Rev. D10, 2324 (1974).

    Google Scholar 

  69. Hanni, R. S. and Ruffini, R.: submitted to Phys. Rev. (1974).

    Google Scholar 

  70. Wilson, J.: in vited talk delivered at the seventh Texas symposium on relativistic astrophysics, to appear in the proceedings, 1974.

    Google Scholar 

  71. Ruffini, R.: in vited talk delivered at the seventh Texas symposium on relativistic astrophysics, to appear in the proceedings, 1974.

    Google Scholar 

  72. Ruffini, R. and Wheeler, J. A.: in L. Radicati (ed.), Proceedings of the Cortona Symposium on Weak interactions, Academia Nationale dei Lincei, Rome, 1971.

    Google Scholar 

  73. Ruffini, R. and Zerilli, F.: ‘Polarization of Gravitational and Electromagnetic Radiation etc.’, Appendix A 3.7 in Reference 17, 1973.

    Google Scholar 

  74. Rees, M., Ruffini, R., and Wheeler, J. A.: Black Holes, Gravitational Waves and Cosmology, Gordon and Breach, New York, 1974.

    Google Scholar 

  75. Breit, G. and Wigner, E. P.: Phys. Rev. 49, 519 (1936).

    ADS  MATH  Google Scholar 

  76. Weber, J.: Phys. Rev. 117, 306 (1960).

    MathSciNet  ADS  MATH  Google Scholar 

  77. Sinsky, J. and Weber, J.: Phys. Rev. Letters 18, 795 (1967).

    ADS  Google Scholar 

  78. Weber, J.: Phys. Rev. Letters 17, 1228 (1966).

    ADS  Google Scholar 

  79. Weber, J.: Phys. Rev. Letters 21, 395 (1968).

    ADS  Google Scholar 

  80. Weber, J.: Phys. Rev. Letters 24, 276 (1970).

    ADS  Google Scholar 

  81. Weber, J.: Phys. Rev. Letters 22, 1320 (1969).

    ADS  Google Scholar 

  82. Weber, J.: Phys. Rev. Letters 18, 498 (1967).

    ADS  Google Scholar 

  83. Weber, J.: Phys. Rev. Letters 25, 180 (1970).

    ADS  Google Scholar 

  84. Weber, J.: Nuovo Cimento 4B, 197 (1971).

    Google Scholar 

  85. Weber, J.: Nature 240, 28 (1972).

    ADS  Google Scholar 

  86. d’Anna, E., Pizzella, G., and Trevese, D.: Nuovo Cimento Letters 9, 231 (1974).

    ADS  Google Scholar 

  87. Ruffini, R. and Wheeler, J. A.: Physics Today 24, 30 (1971).

    ADS  Google Scholar 

  88. Zel’dovich, Ya. B. and Guseynov, O. Kh.: Dokl. Akad. Nank USSR 162, 791 (1965).

    Google Scholar 

  89. Shklovsky, I. S.: Astrophys. J. 148, L1 (1967).

    ADS  Google Scholar 

  90. Ze’dovich, Ya. B. and Novikov, I. D.: Soviet Phys. Dokl. 9, 246 (1964).

    ADS  Google Scholar 

  91. Schwartzman, V. F.: Astron. Zh. 47, 824 (1970).

    ADS  Google Scholar 

  92. Giacconi, R., see e.g., Talk delivered at the 64th Symposium of the International Astronomical Union, Warsaw 1973. To appear in the proceedings.

    Google Scholar 

  93. See also Gursky, H. and Schreier, E.: this volume, p. 175.

    Google Scholar 

  94. Leach, R. and Ruffini, R.: Astrophys. J. Letters 180, L15 (1973).

    ADS  Google Scholar 

  95. Ruffini, R. and Wilson, J.: Phys. Rev. Letters 32, 324 (1974).

    ADS  Google Scholar 

  96. See e.g. Cameron, A. G. W. and Mock, M.: Nature 215, 264 (1967).

    Google Scholar 

  97. Zel’dovich, Ya. B. and Novikov, I. D.: Relativistic Astrophysics, Vol. 1, Izdatel’stvo Nauka, Moscow, 1967.

    Google Scholar 

  98. Prendergast, K. and Burbidge, G.: Astrophys. J. Letters 151, L83 (1968).

    ADS  Google Scholar 

  99. Schwartzman, V. F.: Astron. Zh. 48, 438 (1971).

    ADS  Google Scholar 

  100. Schwartzman, V. F.: Soviet Astron. 15, 343 (1971).

    ADS  Google Scholar 

  101. Pringle, J. E. and Rees, M.: Astron. Astrophys. 21, 1 (1972).

    ADS  Google Scholar 

  102. Ostriker, J. and Davidson, K.: in H. Bradt and R. Giacconi (eds.), X-Ray and Gamma Ray Astronomy, D. Reidel, Dordrecht, 1973.

    Google Scholar 

  103. Lamb, F. K., Pethick, C. J., and Pines, D.: Astrophys. J. 184, 271 (1973).

    ADS  Google Scholar 

  104. Shakura, N. and Sunyaev, R.: Astron, Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  105. Baker, K. and Ruffini, R.: submitted to Astron. Astrophys.

    Google Scholar 

  106. Ferrari, A. and Ruffini, R.: Astrophys. J. Letters 158, L71 (1969).

    ADS  Google Scholar 

  107. Giacconi, R., Gursky, H., Kellog, E., Schreier, E., and Tananbaum, H.: Astrophys. J. Letters 167, L7 (1971).

    Google Scholar 

  108. Giacconi, R., Gursky, H., Kellog, E., Levinson, R., Schreier, E., and Tananbaum, H.: Astrophys. J. 184, 227 (1973).

    ADS  Google Scholar 

  109. Tananbaum, H., Gursky, H., Kellog, E. M., Levinson, R., Schreier, E., and Giacconi R.: Astrophys. J. Letters 174, L143 (1972).

    ADS  Google Scholar 

  110. Bahcall, J. N. and Bahcall, N. A.: IAU Circ., Nos. 2427 and 2428 (1972).

    Google Scholar 

  111. Bahcall, J. N. and Bahcall, N. A.: Astrophys. J. Letters 178, L1 (1972).

    ADS  Google Scholar 

  112. Boynton, P. E., Canterna, R., Crosa, L., Deeter, J., and Gerend, D.: Astrophys. J. 186, 617 (1973)

    ADS  Google Scholar 

  113. Crampton, D. and Hutchings, J. B.: Astrophys. J. Letters 178, L65 (1972).

    ADS  Google Scholar 

  114. Davidson, A., Henry, J. P., Middleditch, J., and Smith, H. E.: Astrophys. J. Letters 177, L97 (1972).

    ADS  Google Scholar 

  115. Forman, W., Jones, C. A., and Liller, W.: Astrophys. J. Letters 177, L103 (1972).

    ADS  Google Scholar 

  116. Jones, C. A., Forman, W., and Liller, W.: Astrophys. J. Letters 182, L109 (1973).

    ADS  Google Scholar 

  117. Petro, L. and Hiltner, W. A.: Astrophys. J. Letters 181, L39 (1973).

    ADS  Google Scholar 

  118. Liller, W.: IAU Circ., No. 2517 (1973).

    Google Scholar 

  119. Giacconi, R.: talk delivered at the 1973-Solvay Conference on Relativistic Astrophysics. To appear in the proceedings, in press.

    Google Scholar 

  120. Oda, H. Gorenstein, P., Gursky, H., Kellog, E., Schreier, E., Tananbaum, H., and Giacconi, R.: Astrophys. J. Letters 166, L1 (1971).

    Google Scholar 

  121. Schreier, E., Gursky, H., Kellog, E., Tananbaum, H., Giacconi, R.: Astrophys. J. Letters 170, L21 (1971).

    ADS  Google Scholar 

  122. Rappaport, S., Zaumen, W., Doxsey, R.: Astrophys. J. Letters 168, L17 (1971).

    ADS  Google Scholar 

  123. Shulman, S., Fritz, G., Meekins, J. F., Friedmann, H., and Meidav, M.: Astrophys. J. Letters 168, L49 (1971).

    ADS  Google Scholar 

  124. Rappaport, S., Doxsey, R., and Zaumen, W.: Astrophys. J. Letters 168, L43 (1971).

    ADS  Google Scholar 

  125. Margon, B., Bowyer, S., Stone, R. P. S.: Astrophys. J. Letters 185, L113 (1973).

    ADS  Google Scholar 

  126. Bergman, J., Butler, D., Kemper, E., Koski, A., Kraft, R. P., and Stone, R. P.: Astrophys. J. Letters 185, L117 (1973).

    ADS  Google Scholar 

  127. Hjellming, R. M., Wade, C. M., Hughes, V. A., and Woodsworth, A.: Nature 234, 138 (1971).

    ADS  Google Scholar 

  128. Hjellming, R. M.: Astrophys. J. Letters 182, L29 (1973).

    ADS  Google Scholar 

  129. Colgate, S.: Nature 225, 247 (1970).

    ADS  Google Scholar 

  130. Ruffini, R.: see Reference 17.

    Google Scholar 

  131. Webster, B. L. and Murdin, P.: Nature 235, 37 (1972).

    ADS  Google Scholar 

  132. Bolton, C. T.: Nature Phys. Sci. 240, 124 (1972).

    ADS  Google Scholar 

  133. Hutchings, J. B., Crampton, D., Glaspey, J., and Walker, G. A. H.: Astrophys. J. 182, 549 (1973).

    ADS  Google Scholar 

  134. Brucato, R. and Kristian, J.: Astrophys. J. Letters 179, L129 (1973).

    ADS  Google Scholar 

  135. Ruffini, R.: ‘X-Ray Sources: Neutron Stars or Black Holes’, invited talk at the Texas Meeting of Relativistic Astrophysics, New York, 1972, unpublished. See Reference 17.

    Google Scholar 

  136. Rothschild, R. E., Boldt, E. A., Holt, S. A., and Serlemitsos, P. F.: Astrophys. J. Letters 189, L13 (1974).

    ADS  Google Scholar 

  137. Lyutiy, V. M., Sunyaey, R. A., and Cherepashchuk, A. M.: Astron. Zh. 50, 3 (1973).

    ADS  Google Scholar 

  138. Bolton, T.: to be published.

    Google Scholar 

  139. Paczinsky, B.: Ann. Rev. Astron. Astrophys. 9, 183 (1971) and references mentioned there.

    Google Scholar 

  140. Arnett, W. D.: Nature 219, 1344 (1968).

    ADS  Google Scholar 

  141. Arnett, W. D.: Astrophys. Space Sci. 5, 180 (1969).

    ADS  Google Scholar 

  142. See also Colgate, S.: this volume, p. 13.

    Google Scholar 

  143. Kippenhahn and Weigert see e.g. Kippenhahn, R.: Astron. Astorphys. 3, 83 (1969).

    Google Scholar 

  144. Kippenhahn, R., Kohl, K., and Weigert, A.: Z. Astrophys. 66, 58 (1967).

    ADS  Google Scholar 

  145. Kippenhahn, R. and Weigert, A.: Z. Astrophys. 65, 251 (1967). By Giannone et al., see e.g.

    Google Scholar 

  146. Giannone, P. and Giannuzzi, M. A.: Astron. Astrophys. 6, 309 (1971).

    ADS  Google Scholar 

  147. Giannone, P. and Giannuzzi, M. A.: Astron. Astrophys. 18, 111 (1972); see also 19, 298 (1972).

    Google Scholar 

  148. Giannone, P., Refsdal, S., and Weigert, A.: Astron. Astrophys. 4, 428 (1970).

    ADS  Google Scholar 

  149. Van den Heuvel, E.: Bui. Astron. Inst. Neth. 19, 432 (1968).

    ADS  Google Scholar 

  150. Van den Heuvel, E.: Nature Phys. Sci. 242, 71 (1973).

    ADS  Google Scholar 

  151. Van den Heuvel, E. and Heise, J.: Nature Phys. Sci. 239, 67 (1972).

    ADS  Google Scholar 

  152. Van den Heuvel, E. and Ostriker, J.: Nature Phys. Sci. 245, 99 (1973).

    ADS  Google Scholar 

  153. See also Kraft, R. P.: this volume, p. 235.

    Google Scholar 

  154. For the mass-radius relation and much of the details of white dwarfs stars, see the classical work of Chandrasekhar, S.: Stellar Evolution, Dover Publ. Inc., 1957.

    Google Scholar 

  155. See e.g. Van de Kamp, P.: Handbuch der Physik 50, 187 (1958).

    Google Scholar 

  156. Warner, B.: Monthly Notices Roy. Astron. Soc. 160, 35 (1972).

    ADS  Google Scholar 

  157. Warner, B.: Monthly Notices Roy. Astron. Soc. 162, 189 (1973) and references mentioned there. See also Warner, B. and Robinson, E. L.: Nature Phys. Sci. 239, 2 (1972) and references men-tioned there.

    Google Scholar 

  158. Walker, M. F.: Publ. Astron. Soc. Pacific 66, 230 (1954).

    ADS  Google Scholar 

  159. This pulsation appears to be very abnormal for a white dwarf star of reasonable mass. Although an explanation of this abnormal period has been advanced by Channugan, G.: Nature 236, 3 (1972) in term of non radial pulsations more work is needed to explore the full significance of this very important experimental result and especially to explore the possibility that the pulsation in the luminosity of these systems, be explainable as associated to the rotational period of a white dwarf.

    Google Scholar 

  160. See Strong, I. B.: this volume, p. 47.

    Google Scholar 

  161. See also Strong, I. B., Klebesadel, R. W., and Olson, R. A.: Astrophys. J. Letters 188, L1 (1974).

    Google Scholar 

  162. Ruffini, R. and Treves, A.: submitted to Astrophys. Letters.

    Google Scholar 

  163. See e.g. The Evolution Computations of Binary Systems by Paczinsky Weigert and Kippenhan, Giannone et al., Van den Heuvel (see Reference 130).

    Google Scholar 

  164. Becklin, E. E., Kristian, J., Neugehauer, G., Wynn Williams, C. G.: Nature Phys. Sci 239, 130 (1972).

    ADS  Google Scholar 

  165. Paczinksy, B.: Acta Astronomica 20, 2 (1970).

    Google Scholar 

  166. For derivation of this formula see Landau, L. and Lifschitz, E.: Theorie des champs, editions M.I.R., Moscow, 1970.

    Google Scholar 

  167. For an estimate of a large set of sources of gravitational radiation with their characteristic sig-nature and energetics, see Reference 69.

    Google Scholar 

  168. Dyson, F. J.: Chapter 12 in A. G. W. Cameron (ed.), Interstellar Communication, W. A. Benja-min, New York, 1963.

    Google Scholar 

  169. Tyson, J. A.: Phys. Rev. Letters 31, 326 (1973).

    ADS  Google Scholar 

  170. Douglas, D. H.: see e.g. Talk delivered at the Sixth Cambridge Conference On Exprimental Relativity, MIT, 1974, unpublished.

    Google Scholar 

  171. Billing, H. et al.: see e.g. Talk delivered at the Sixth Cambridge Conference on Experimental Relativity, MIT, 1974, unpublished.

    Google Scholar 

  172. Braginsky, V.: J.E.T.P. Letters 16, 108 (1972).

    ADS  Google Scholar 

  173. Levine, J. L. and Garwin, R. L.: Phys. Rev. Letters 31, 173 (1973).

    ADS  Google Scholar 

  174. Garwin, R. L. and Levine, J. L.: Phys. Rev. Letters 31, 176 (1973).

    ADS  Google Scholar 

  175. Ruffini, R.: in R. D. Davies and F. G. Smith (eds.), ‘The Crab Nebula’, IAU Symp. 46, 382, (1971).

    Google Scholar 

  176. For a detailed estimate of the energy and frequency of gravitational radiation emitted by a vibrating neutron star, see Table XVIII in Reference 39.

    Google Scholar 

  177. Fairbank, W. M., Boughn, S. P., Paik, H. J., McAshan, M. S., and Opfer, J. E., and Taber, R. C., Hamilton, W. O., Pipes, B., and Bernat, T.: in B. Bertotti (ed.), Varenna 1972 ‘Enrico Fermi’ Summer School, Academic Press, 1974.

    Google Scholar 

  178. Amaldi, E.: Rapporto al Comitato Fisica del C.N.R. (1973). See also Pizzella, G.: ‘Low Temper-ature Detectors of Gra. rad.’, Nota Interna. Univ. of Rome, 1974; and Carelli, P., Cerdonio, M., Giovannardi, U., Lucano, G., and Modena, I.: ‘Low Temperature Gravitational Radiation Antenna - A Progress Report’, Colloque Int. Ondes Gravitationelle, Paris, 1973, to be published.

    Google Scholar 

  179. Braginsky, V. B. and Rudenko, B. N.: Uspekhi 100, 395 (1970).

    Google Scholar 

  180. Bagdasarov, H. S., Braginsky, B. B., and Mitrafanov, V. P.: preprint I.T.P. 73-93E, Kiev, 1973.

    Google Scholar 

  181. Paik, H. J.: ‘Displacement Detection for the Temperature Gravitational Wave Detector’, in B. Bertotti (ed.), Varenna 1972 ‘Enrico Fermi’ Summer School, Academic Press, 1974.

    Google Scholar 

  182. See Reference 50. See also Field, G. B., Rees, M. J., and Sciama, D. W.: Comments Astron. Space Sci. 1, 187 (1969).

    Google Scholar 

  183. See e.g. Chandrasekhar, S.: Ellipsoidal Figures of Equilibrium, Yale University, 1969.

    Google Scholar 

  184. De Gasperis, A. and Pietronero, L.: to be published.

    Google Scholar 

  185. Ruffini, R.: ‘Theoretical and Experimental Progress in the Detection of Gravitational Radiation’, La Recherche, in press (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 D. Reidel Publishing Company, Dordrecht-Holland

About this chapter

Cite this chapter

Ruffini, R. (1975). The Physics of Gravitationally Collapsed Objects. In: Gursky, H., Ruffini, R. (eds) Neutron Stars, Black Holes and Binary X-Ray Sources. Astrophysics and Space Science Library, vol 48. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1767-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1767-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-0542-6

  • Online ISBN: 978-94-010-1767-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics