Skip to main content

Eco-Evo-Devo: The Time Has Come

  • Chapter
  • First Online:
Ecological Genomics

Abstract

The major goal of ecological evolutionary developmental biology, also known as “eco-evo-devo,” is to uncover the rules that underlie the interactions between an organism’s environment, genes, and development and to incorporate these rules into evolutionary theory. In this chapter, we discuss some key and emerging concepts within eco-evo-devo. These concepts show that the environment is a source and inducer of genotypic and phenotypic variation at multiple levels of biological organization, while development acts as a regulator that can mask, release, or create new combinations of variation. Natural selection can subsequently fix this variation, giving rise to novel phenotypes. Combining the approaches of eco-evo-devo and ecological genomics will mutually enrich these fields in a way that will not only enhance our understanding of evolution, but also of the genetic mechanisms underlying the responses of organisms to their natural environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abouheif E (1997) Developmental genetics and homology: a hierarchical approach. Trends Ecol Evol 12:405–408

    PubMed  CAS  Google Scholar 

  • Abouheif E (1999) Establishing homology criteria for regulatory gene networks: prospects and challenges. In: Homology, vol 222, Novartis foundation symposium. Wiley, Chichester, pp 207–225

    Google Scholar 

  • Abouheif E (2008) Parallelism as the pattern and process of mesoevolution. Evol Dev 10(1):3–5

    PubMed  Google Scholar 

  • Abouheif E, Wray GA (2002) Evolution of the gene network underlying wing polyphenism in ants. Science 297(5579):249–252

    PubMed  CAS  Google Scholar 

  • Armbruster WS, Lee J, Baldwin BG (2009) Macroevolutionary patterns of defense and pollination in Dalechampia vines: adaptation, exaptation, and evolutionary novelty. Proc Natl Acad Sci 106(43): 18085–18090

    PubMed  CAS  Google Scholar 

  • Bell MA, Foster SA (1994) The evolutionary biology of the threespine stickleback. Oxford University Press, Oxford

    Google Scholar 

  • Braendle C, Felix MA (2009) The other side of phenotypic plasticity: a developmental system that generates an invariant phenotype despite environmental variation. J Biosci 34(4):543–551

    PubMed  Google Scholar 

  • Braendle C, Friebe I, Caillaud MC, Stern DL (2005) Genetic variation for an aphid wing polyphenism is genetically linked to a naturally occurring wing polymorphism. Proc R Soc B 272:657–664

    PubMed  Google Scholar 

  • Carroll S, Grenier J, Weatherbee S (2005) From DNA to diversity. Blackwell Science, Oxford, 258 pp

    Google Scholar 

  • Chan YF, Marks ME, Jones FC et al (2010) Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327(5963): 302–305

    PubMed  CAS  Google Scholar 

  • Collin R (2004) Phylogenetic effects, the loss of complex characters, and the evolution of development in calyptraeid gastropods. Evolution 58(7):1488–1502

    PubMed  Google Scholar 

  • Collin R, Cipriani R (2003) Dollo’s law and the re–evolution of shell coiling. Proc R Soc Lond B Biol Sci 270(1533):2551–2555

    Google Scholar 

  • Collin R, Miglietta MP (2008) Reversing opinions on Dollo’s Law. Trends Ecol Evol 23(11):602–609

    PubMed  Google Scholar 

  • Collin R, Chaparro OR, Winkler F, Véliz D (2007) Molecular phylogenetic and embryological evidence that feeding larvae have been reacquired in a marine gastropod. Biol Bull 212(2):83–92

    PubMed  CAS  Google Scholar 

  • Colosimo PF, Hosemann KE, Balabhadra S et al (2005) Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 307(5717):1928–1933

    PubMed  CAS  Google Scholar 

  • Crickmore MA, Ranade V, Mann RS (2009) Regulation of Ubx expression by epigenetic enhancer silencing in response to Ubx levels and genetic variation. PLoS Genet 5(9):e1000633

    PubMed  Google Scholar 

  • Darwin C (1868) The variation of animals and plants under domestication, vol 2. John Murray, London

    Google Scholar 

  • Davidson EH (2006) The regulatory genome: gene regulatory networks in development and evolution. Academic Press, London

    Google Scholar 

  • Dawkins R (1978) Replicator selection and the extended phenotype. Z Tierpsychol 47:61–76

    PubMed  CAS  Google Scholar 

  • Dubrow TJ, Wackym PA, Lesavoy MA (1988) Detailing the human tail. Ann Plast Surg 20(4):340

    PubMed  CAS  Google Scholar 

  • Durkin SG, Glover TW (2007) Chromosome fragile sites. Annu Rev Genet 41:169–192

    PubMed  CAS  Google Scholar 

  • Duveau F, Félix MA (2012) Role of pleiotropy in the evolution of a cryptic developmental variation in Caenorhabditis elegans. PLoS Biol 10(1):e1001230

    PubMed  CAS  Google Scholar 

  • Dworkin I (2005) Towards a genetic architecture of cryptic genetic variation and genetic assimilation: the contribution of KG Bateman. J Genet 84(3):223

    PubMed  Google Scholar 

  • Eshel I, Matessi C (1998) Canalization, genetic assimilation and preadaptation: a quantitative genetic model. Genetics 149(4):2119

    PubMed  CAS  Google Scholar 

  • Félix MA (2012) Evolution in developmental phenotype space. Curr Opin Genet Dev 22(6):593–599

    PubMed  Google Scholar 

  • Félix MA, Wagner A (2008) Robustness and evolution: concepts, insights and challenges from a developmental model system. Heredity 100(2): 132–140

    PubMed  Google Scholar 

  • Fernald RD, Maruska KP (2012) Social information changes the brain. Proc Natl Acad Sci 109(2): 17194–17199

    PubMed  CAS  Google Scholar 

  • Findlay SD, Thagard P (2012) How parts make up wholes. Front Physiol 3:1–10

    Google Scholar 

  • Flatt T, Heyland A (eds) (2011) Mechanisms of life history evolution: the genetics and physiology of life history traits and trade-offs. Oxford University Press, Oxford

    Google Scholar 

  • Flatt T, Tu MP, Tatar M (2005) Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. Bioessays 27(10): 999–1010

    PubMed  CAS  Google Scholar 

  • Futuyma DJ (1998) Evolutionary biology, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Gangaraju VK, Yin H, Weiner et al (2011) Drosophila Piwi functions in Hsp90-mediated suppression of phenotypic variation. Nat Genet 43(2):153–158

    PubMed  CAS  Google Scholar 

  • Gasparini C, Serena G, Pilastro A (2013) Do unattractive friends make you look better? Context-dependent male mating preferences in the guppy. Proc R Soc B 280:20123072

    PubMed  Google Scholar 

  • Ghioca-Robrecht DM, Smith LM (2010) The role of spadefoot toad tadpoles in wetland trophic structure as influenced by environmental and morphological factors. Can J Zool 89(1):47–59

    Google Scholar 

  • Gibson G, Dworkin I (2004) Uncovering cryptic genetic variation. Nat Rev Genet 5(9):681–690

    PubMed  CAS  Google Scholar 

  • Gibson G, Hogness DS (1996) Effect of polymorphism in the Drosophila regulatory gene Ultrabithorax on homeotic stability. Science 271(5246):200–203

    PubMed  CAS  Google Scholar 

  • Gilbert SF (1991) Induction and the origins of developmental genetics. Dev Biol 7:181–206

    CAS  Google Scholar 

  • Gilbert SF (2010) Developmental biology. Sinauer Associates, Sunderland

    Google Scholar 

  • Gilbert SF, Epel D (2009) Ecological developmental biology. Sinauer Associates, Sunderland

    Google Scholar 

  • Gloor H (1947) Phänokopie Versuche mit Aether an Drosophila. Rev Suisse Zool 54:637–712

    Google Scholar 

  • Goldberg EE, Igić B (2008) On phylogenetic tests of irreversible evolution. Evolution 62(11):2727–2741

    PubMed  Google Scholar 

  • Gursky VV, Surkova SY, Samsonova MG (2012) Mechanisms of developmental robustness. Biosystems 109(3):329–335

    PubMed  CAS  Google Scholar 

  • Hall BK (2003) Descent with modification: the unity underlying homology and homoplasy as seen through an analysis of development and evolution. Biol Rev 78(3):409–433

    PubMed  Google Scholar 

  • Hall BK (2013) Epigenesis, epigenetics, and the epigenotype: toward an inclusive concept of development and evolution. In: Brian G. Henning, Adam C. Scarfe (eds) Beyond mechanism: putting life back into biology. Lexington Books, Maryland, pp 348–371

    Google Scholar 

  • Harris MP, Hasso SM, Ferguson MW, Fallon JF (2006) The development of archosaurian first-generation teeth in a chicken mutant. Curr Biol 16(4):371–377

    PubMed  CAS  Google Scholar 

  • Hayden EJ, Ferrada E, Wagner A (2011) Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme. Nature 474(7349):92–95

    PubMed  CAS  Google Scholar 

  • Heitzler P, Simpson P (1991) The choice of cell fate in the epidermis of Drosophila. Cell 64(6):1083–1092

    PubMed  CAS  Google Scholar 

  • Hölldobler B, Wilson E (1990) The ants. Harvard University Press, Cambridge

    Google Scholar 

  • Hölldobler B, Wilson E (2008) The superorganism: the beauty, elegance and strangeness of insect societies. W.W. Norton, New York

    Google Scholar 

  • Holloway DM, Lopes FJ, da Fontoura Costa L et al (2011) Gene expression noise in spatial patterning: hunchback promoter structure affects noise amplitude and distribution in Drosophila segmentation. PLoS Comput Biol 7(2):e1001069

    PubMed  CAS  Google Scholar 

  • Huang MH (2010) Multi-phase defense by the big-headed ant, Pheidole obtusospinosa, against raiding army ants. J Insect Sci 10:1

    PubMed  CAS  Google Scholar 

  • Hudson A (1966) Proteins in the haemolymph and other tissues of the developing tomato hornworm, Protoparce quinquemaculata Haworth. Can J Zool 44(4):541–555

    PubMed  CAS  Google Scholar 

  • Jagers op Akkerhuis GAJM (2008) Analysing hierarchy in the organization of biological and physical systems. Biol Rev 83(1):1–12

    PubMed  Google Scholar 

  • Jenner RA, Wills MA (2007) The choice of model organisms in evo–devo. Nat Rev Genet 8(4):311–314

    PubMed  CAS  Google Scholar 

  • Jones FC, Grabherr MG, Chan YF et al (2012) The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484(7392):55–61

    PubMed  CAS  Google Scholar 

  • Kilfoil ML, Lasko P, Abouheif E (2009) Stochastic variation: from single cells to superorganisms. HFSP J 3(6):379–385

    PubMed  CAS  Google Scholar 

  • Kohlsdorf T, Wagner GP (2006) Evidence for the reversibility of digit loss: a phylogenetic study of limb evolution in Bachia (Gymnophthalmidae: Squamata). Evolution 60(9):1896–1912

    PubMed  Google Scholar 

  • Kohlsdorf T, Lynch VJ, Rodrigues MT, Brandley MC, Wagner GP (2010) Data and data interpretation in the study of limb evolution: a reply to Galis et al. on the reevolution of digits in the lizard genus Bachia. Evolution 64(8):2477–2485

    Google Scholar 

  • Landry CR (2009) Systems biology spins off a new model for the study of canalization. Trends Ecol Evol 24(2):63–66

    PubMed  Google Scholar 

  • Ledón‐Rettig CC, Pfennig DW (2011) Emerging model systems in eco‐evo‐devo: the environmentally responsive spadefoot toad. Evol Dev 13(4):391–400

    PubMed  Google Scholar 

  • Ledón-Rettig CC, Pfennig DW, Crespi EJ (2010) Diet and hormonal manipulation reveal cryptic genetic variation: implications for the evolution of novel feeding strategies. Proc R Soc B Biol Sci 277(1700):3569–3578

    Google Scholar 

  • Levinton JS (1986) Developmental constraints and evolutionary saltations: a discussion and critique. In: Gustafson JP, Stebbins GL, Ayala FJ (eds) Genetics, development and evolution. Plenum, New York, pp 253–288

    Google Scholar 

  • Levy SF, Siegal ML (2008) Network hubs buffer environmental variation in Saccharomyces cerevisiae. PLoS Biol 6(11):e264

    PubMed  Google Scholar 

  • Lewontin R (1970) The units of selection. Annu Rev Ecol Evol Syst 1:1–18

    Google Scholar 

  • Lewontin R (1974) Annotation: analysis of variance and analysis of causes. Am J Hum Genet 26(3):400–411

    PubMed  CAS  Google Scholar 

  • Longo G, Miquel PA, Sonnenschein C, Soto AM (2012) Is information a proper observable for biological organization? Prog Biophys Mol Biol 109(3):108–114

    PubMed  CAS  Google Scholar 

  • Losick R, Desplan C (2008) Stochasticity and cell fate. Science 320(5872):65–68

    PubMed  CAS  Google Scholar 

  • Ma W, Lai L, Ouyang Q, Tang C (2006) Robustness and modular design of the Drosophila segment polarity network. Mol Syst Biol 2:70

    PubMed  Google Scholar 

  • MacMahon JA, Phillips DL, Robinson JV, Schimpf DJ (1978) Levels of biological organization: an organism-centered approach. BioScience 28(11):700–704

    PubMed  CAS  Google Scholar 

  • Masel J, Siegal M (2009) Robustness: mechanisms and consequences. Trends Genet 25(9):395–403

    PubMed  CAS  Google Scholar 

  • McAdams HH, Arkin A (1999) It’s a noisy business! Genetic regulation at the nanomolar scale. Trends Genet 15(2):65–69

    PubMed  CAS  Google Scholar 

  • McGlashan JK, Spencer R-J, Old JM (2012) Embryonic communication in the nest: metabolic responses of reptilian embryos to developmental rates of siblings. Proc R Soc B 279:1709–1715

    PubMed  Google Scholar 

  • Moczek AP, Nijhout HF (2002) Developmental mechanisms of threshold evolution in a polyphenic beetle. Evol Dev 4(4):252–264

    PubMed  Google Scholar 

  • Nijhout HF (1998) Insect hormones. Princeton University Press, Princeton

    Google Scholar 

  • Nijhout HF (1999) Control mechanisms of polyphenic development in insects. Bioscience 49(3):181–192

    Google Scholar 

  • Nijhout HF, Emlen DJ (1998) Competition among body parts in the development and evolution of insect morphology. Proc Natl Acad Sci 95:3685–3689

    PubMed  CAS  Google Scholar 

  • Pal-Bhadra M, Leibovitch BA, Gandhi SG et al (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303(5658):669–672

    PubMed  CAS  Google Scholar 

  • Passera L (1977) Production des soldats dans les societes sortant d’hibernation chez la fourmi Pheidole pallidulla (NYL.) (Formicidae, Myrmicinae). Insect Soc 24(2):131–146

    Google Scholar 

  • Passera L, Roncin E, Kaufmann B, Keller L (1996) Increased soldier production in ant colonies exposed to intraspecific competition. Nature 379:630–631

    CAS  Google Scholar 

  • Peeters C, Liebig J, Hölldobler B (2000) Sexual reproduction by both queens and workers in the ponerine ant Harpegnathos saltator. Insect Soc 47:325–332

    Google Scholar 

  • Pfennig DW, Murphy PJ (2000) Character displacement in polyphenic tadpoles. Evolution 54(5):1738–1749

    PubMed  CAS  Google Scholar 

  • Pie MR, Traniello JFA (2007) Morphological evolution in a hyperdiverse clade: the ant genus Pheidole. J Zool 271(1):99–109

    Google Scholar 

  • Pigliucci M, Kaplan J (2006) Making sense of evolution: the conceptual foundations of evolutionary biology. University of Chicago Press, Chicago

    Google Scholar 

  • Proulx SR, Phillips PC (2005) The opportunity for canalization and the evolution of genetic networks. Am Nat 165(2):147–162

    PubMed  Google Scholar 

  • Rajakumar R, San Mauro D, Dijkstra MB et al (2012) Ancestral developmental potential facilitates parallel evolution in ants. Science 335(6064):79–82

    PubMed  CAS  Google Scholar 

  • Renn SCP, Aubin-Horth N, Hoffman HA (2008) Fish and chips: functional genomics of social plasticity in an African cichlid fish. J Exp Biol 211:3041–3056

    PubMed  CAS  Google Scholar 

  • Rockman MV, Wray GA (2002) Abundant raw material for cis-regulatory evolution in humans. Mol Biol Evol 19(11):1991–2004

    PubMed  CAS  Google Scholar 

  • Roff DA (1996) The evolution of threshold traits in animals. Q Rev Biol 71:3–35

    Google Scholar 

  • Roff DA, Fairbairn DJ (1991) Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. Am Zool 31(1):243–251

    Google Scholar 

  • Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396(6709):336–342

    PubMed  CAS  Google Scholar 

  • Schlosser G, Wagner GP (2004) Modularity in development and evolution. University of Chicago Press, Chicago

    Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Schmalhausen I (1949) Factors of evolution : the theory of stabilizing selection. Blakiston Co., Philadelphia

    Google Scholar 

  • Shbailat SJ, Abouheif E (2012) The wing-patterning network in the wingless castes of Myrmicine and Formicine Ant species is a mix of evolutionarily labile and non-labile genes. J Exp Zool B Mol Dev Evol 9999B:1–10

    Google Scholar 

  • Shbailat SJ, Khila A, Abouheif E (2010) Correlations between spatiotemporal changes in gene expression and apoptosis underlie wing polyphenism in the ant Pheidole morrisi. Evol Dev 12(6):580–591

    PubMed  CAS  Google Scholar 

  • Siegal ML, Bergman A (2002) Waddington’s canalization revisited: developmental stability and evolution. Proc Natl Acad Sci USA 99(16):10528–10532

    PubMed  CAS  Google Scholar 

  • Stiassny MLJ (2003) Atavism. In: Hall BK, Olsen WM (eds) Keywords and concepts in evolutionary developmental biology. Harvard University Press, Cambridge, pp 10–14

    Google Scholar 

  • Suzuki Y, Nijhout HF (2006) Evolution of a polyphenism by genetic accomodation. Science 311:650–652

    PubMed  CAS  Google Scholar 

  • Tinbergen N (1971) Social behaviour in animals, with a special reference to vertebrates, Science paperbacks. Chapman and Hall, London

    Google Scholar 

  • Tomić N, Meyer-Rochow VB (2011) Atavisms: medical, genetic, and evolutionary implications. Perspect Biol Med 54(3):332–353

    PubMed  Google Scholar 

  • Tomoyasu Y, Arakane Y, Kramer KJ, Denell RE (2009) Repeated co-options of exoskeleton formation during wing-to-elytron evolution in beetles. Curr Biol 19(24):2057–2065

    PubMed  CAS  Google Scholar 

  • Ungerer MC, Johnson LC, Herman MA (2008) Ecological genomics: understanding gene and genome function in the natural environment. Heredity 100:178–183

    PubMed  CAS  Google Scholar 

  • Valentine JW (2003) Architectures of biological complexity. Integr Comp Biol 43(1):99–103

    PubMed  Google Scholar 

  • von Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity network is a robust developmental module. Nature 406(6792):188–192

    Google Scholar 

  • Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 150:563–565

    Google Scholar 

  • Waddington CH (1956) Genetic assimilation of the bithorax phenotype. Evolution 10(1):1–13

    Google Scholar 

  • Waddington CH (1957) The genetic basis of ‘assimilated bithorax’ stock. J Genet 55(2):241–245

    Google Scholar 

  • Waddington CH (1959) Evolutionary systems-animal and human. Nature 183(4676):1634–1638

    PubMed  CAS  Google Scholar 

  • Wagner A (2005) Distributed robustness versus redundancy as causes of mutational robustness. Bioessays 27(2):176–188

    PubMed  CAS  Google Scholar 

  • Wake DB, Wake MH, Specht CD (2011) Homoplasy: from detecting pattern to determining process and mechanism of evolution. Science 331(6020):1032–1035

    PubMed  CAS  Google Scholar 

  • Weatherbee SD, Halder G, Kim J et al (1998) Ultrabithorax regulates genes at several levels of the wing-patterning hierarchy to shape the development of the Drosophila haltere. Genes Dev 12(10):1474–1482

    PubMed  CAS  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New York

    Google Scholar 

  • West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proc Natl Acad Sci USA 102(Suppl 1):6543–6549

    PubMed  CAS  Google Scholar 

  • Wheeler DE, Nijhout HF (1981) Soldier determination in ants: new role for juvenile hormone. Science 213:361–363

    PubMed  CAS  Google Scholar 

  • Wheeler DE, Nijhout HF (1983) Soldier determination in Pheidole bicarinata: effect of methoprene on caste and size within castes. J Insect Physiol 29(11):847–854

    Google Scholar 

  • Wheeler DE, Nijhout HF (1984) Soldier determination in Pheidole bicarinata: inhibition by adult soldiers. J Insect Physiol 30(2):127–135

    Google Scholar 

  • Whitacre JM, Lin J, Harding A (2012) T cell adaptive immunity proceeds through environment-induced adaptation from the exposure of cryptic genetic variation. Front Genet 3:1–11

    Google Scholar 

  • Whiting MF, Bradler S, Maxwell T (2003) Loss and recovery of wings in stick insects. Nature 421(6920):264–267

    PubMed  CAS  Google Scholar 

  • Wiens JJ (2011) Re-evolution of lost mandibular teeth in frogs after more than 200 million years, and re-evaluating Dollo’s law. Evolution 65(5):1283–1296

    PubMed  Google Scholar 

  • Wray GA (1999) Evolutionary dissociations between homologous genes and homologous structures. In: Bock GR, Cardew G (eds) Homology. Wiley, Chichester, pp 189–206

    Google Scholar 

  • Wray GA, Abouheif E (1998) When is homology not homology? Curr Opin Genet Dev 8(6):675–680

    PubMed  CAS  Google Scholar 

  • Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, Romano LA (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20(9):1377–1419

    PubMed  CAS  Google Scholar 

  • Wund MA, Baker JA, Clancy B et al (2008) A test of the “flexible stem” model of evolution: ancestral plasticity, genetic accommodation, and morphological divergence in the threespine stickleback radiation. Am Nat 172(4):449–462

    PubMed  Google Scholar 

  • Wund MA, Valena S, Wood S, Baker JA (2012) Ancestral plasticity and allometry in threespine stickleback reveal phenotypes associated with derived, freshwater ecotypes. Biol J Linn Soc 105(3):573–583

    Google Scholar 

  • Yang AS, Martin CH, Nijhout HF (2004) Geographic variation in caste structure among ant populations. Curr Biol 14(6):514–519

    PubMed  CAS  Google Scholar 

  • Zera AJ, Tiebel KC (1988) Brachypterizing effect of group rearing, juvenile hormone III and methoprene in the wing-dimorphic cricket, Gryllus rubens. J Insect Physiol 34(6):489–498

    CAS  Google Scholar 

  • Zera AJ, Harshman LG, Williams TD (2007) Evolutionary endocrinology: the developing synthesis between endocrinology and evolutionary genetics. Ann Rev Ecol Evol Syst 38:793–817

    Google Scholar 

  • Zylstra U (1992) Living things as hierarchically organized structures. Synthese 91(1–2):111–133

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Editors for their insightful comments on this chapter, and for the opportunity to contribute it in the first place. Funding for this work was provided to E.A. by the Canada Research Chairs Program and Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehab Abouheif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Abouheif, E., Favé, MJ., Ibarrarán-Viniegra, A.S., Lesoway, M.P., Rafiqi, A.M., Rajakumar, R. (2014). Eco-Evo-Devo: The Time Has Come. In: Landry, C., Aubin-Horth, N. (eds) Ecological Genomics. Advances in Experimental Medicine and Biology, vol 781. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7347-9_6

Download citation

Publish with us

Policies and ethics