Skip to main content

Cadmium(II) Complexes of Amino Acids and Peptides

  • Chapter
  • First Online:
Cadmium: From Toxicity to Essentiality

Part of the book series: Metal Ions in Life Sciences ((MILS,volume 11))

Abstract

Cadmium(II) ions form complexes with all natural amino acids and peptides. The thermodynamic stabilities of the cadmium(II) complexes of the most common amino acids and peptides are generally lower than those of the corresponding zinc(II) complexes, except the complexes of thiolate ligands. The coordination geometry of the cadmium(II) amino acid complexes is generally octahedral with the involvement of the amino and carboxylate groups in metal binding. In the case of simple peptides, both octahedral and tetrahedral complexes can be formed depending on the steric conditions. The terminal amino group and the subsequent carbonyl-O atom are the primary binding sites and there is no example for cadmium(II)-induced peptide amide deprotonation and coordination. The various hydrophobic and polar side chains do not have a significant impact on the structural and thermodynamic parameters of cadmium(II) complexes of amino acids and peptides. β-carboxylate function of aspartic acid and imidazole-N donors of histidyl residues slightly enhance the thermodynamic stability of cadmium(II)-peptide complexes. The most remarkable effects of side chains are, however, connected to the involvement of thiolate residues in cadmium(II) binding. Stability constants of the cadmium(II) complexes of both L-cysteine and its peptides and related ligands are significantly higher than those of the zinc(II) complexes. Thiolate donor functions can be bridging ligands too, resulting in the formation of polynuclear cadmium(II) complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ac:

acetyl

Ala:

alanine

Asn:

asparagine

Asp:

aspartic acid

BSA:

bovine serum albumin

CD:

circular dichroism

Cys:

cysteine

DFT:

density functional theory

ESI-MS:

electrospray ionization mass spectrometry

EXAFS:

extended X-ray absorption fine structure

Gln:

glutamine

Glu:

glutamic acid

Gly:

glycine

His:

histidine

HSA:

human serum albumin

Ile:

isoleucine

IR:

infrared

L:

general ligand

L-carnosine:

β-alanyl-L-histidine

Leu:

leucine

Lys:

lysine

NMR:

nuclear magnetic resonance

PC:

phytochelatin

Phe:

phenylalanine

Pro:

proline

PSA:

porcine serum albumin

ROS:

reactive oxygen species

Sar:

sarcosine = N-methylglycine

Thr:

threonine

Val:

valine

XANES:

X-ray absorption near-edge structure

References

  1. I. Eliezer, A. Moreno, J. Chem. Eng. Data 1974, 19, 226–228.

    Article  CAS  Google Scholar 

  2. T. Sato, T. Kato, J. Inorg. Nucl. Chem. 1977, 39, 1205–1208.

    Article  CAS  Google Scholar 

  3. R. Graham, D. Williams, J. Chem. Soc., Dalton Trans. 1974, 1123–1125.

    Google Scholar 

  4. R. F. de Farias, C. Airoldi, J. Inorg. Biochem. 1999, 76, 273–276.

    Google Scholar 

  5. H. A. McKenzie, D. P. Mellor, Aust. J. Chem. 1961, 14, 562–76.

    Article  CAS  Google Scholar 

  6. I. Sóvágó, K. Várnagy, A. Bényei, Magy. Kém. Foly. 1986, 92, 114–116.

    Google Scholar 

  7. R. Abdelhamid, M. K. M. Rabia, Monatshefte Chem. 1994, 125, 1041–1048.

    Article  CAS  Google Scholar 

  8. M. L. S. S. Goncalves, M. M. D. D. Santos, J. Electroanal. Chem. 1985, 187, 333–348.

    CAS  Google Scholar 

  9. G. J. M. Heijne, W. E. Van der Linden, Talanta 1975, 22, 923–925.

    Article  PubMed  CAS  Google Scholar 

  10. J. D. Joshi, P. K. Bhattacharya, Indian J. Chem. 1975, 13, 88–90.

    CAS  Google Scholar 

  11. S.P. Datta, R. Leberman, B. R. Rabin, Trans. Farad. Soc. 1959, 55, 1982–1987.

    Article  CAS  Google Scholar 

  12. D. L. Leussing, E. M. Hanna, J. Amer. Chem. Soc. 1966, 88, 693–696.

    Article  CAS  Google Scholar 

  13. M. Izraeli, L. D. Pettit, J. Inorg. Nucl. Chem. 1975, 999–1003.

    Google Scholar 

  14. M. Kodama, Y. Tominga, Bull. Chem. Soc. Jpn. 1969, 42, 2267–2272.

    Article  CAS  Google Scholar 

  15. F. Gaizer, G. Gondos, L. Gera, Polyhedron, 1986, 5, 1149–1156.

    Article  CAS  Google Scholar 

  16. H. Killa, E. Mabrouk, M. Ghoneim, Bull. Soc. Chim. Fr. 1991, 127, 44–47.

    Google Scholar 

  17. O. A. Weber, V. L. Simeon, Biochem. Biophys. Acta 1971, 244, 94–102.

    Article  CAS  Google Scholar 

  18. S. Pelletier, J. Chim. Phys. 1960, 57, 318–322.

    CAS  Google Scholar 

  19. M. D. Walker, D. R. Williams, J. Chem. Soc., Dalton Trans. 1974, 1186–1189.

    Google Scholar 

  20. F. Khan, K. Nema, J. Indian Chem. Soc. 1989, 66, 17–20.

    CAS  Google Scholar 

  21. E. Bottari, M. R. Festa, Chem. Spec. Bioavailab. 1996, 8, 75–83.

    CAS  Google Scholar 

  22. T. Kiss, I. Sóvágó, A. Gergely, Pure Appl. Chem. 1991, 63, 597–638.

    Google Scholar 

  23. I. Sóvágó, T. Kiss, A. Gergely, Pure Appl. Chem. 1993, 65, 1029–1080.

    Google Scholar 

  24. V. L. Simeon, O. A. Weber, Croatica Chemica Acta 1966, 38, 161–167.

    CAS  Google Scholar 

  25. D. R. Williams, J. Chem. Soc., Dalton Trans. 1973, 1064–1066.

    Google Scholar 

  26. J. W. Bunting, K. M. Thong, Can. J. Chem. 1970, 48, 1654–1656.

    Article  CAS  Google Scholar 

  27. H. Kozlowski, J. Urbanska, I. Sóvágó, K. Várnagy, A. Kiss, J. Spychala, K. Cherifi, Polyhedron, 1990, 9, 831–837.

    Article  CAS  Google Scholar 

  28. J. M. Zhang, Z. W. Wang, Q. Z. Shi, Chinese J. Inorg. Chem. 2004, 20, 324–330.

    Google Scholar 

  29. J. J. Jakobsen, P. D. Ellis, J. Phys. Chem. 1981, 85, 3367–3369.

    CAS  Google Scholar 

  30. M. Monajjemi, M. T. Baie, F. Mollaamin, Russ. Chem. Bull. 2010, 59, 886–889.

    Article  CAS  Google Scholar 

  31. U. Sharma, Thermochim. Acta 1983, 66, 369–372.

    Article  CAS  Google Scholar 

  32. R. L. Rebertus, Dissertation, Univ. of Illinois, 1954.

    Google Scholar 

  33. R. Leberman, B. Rabin, Trans. Faraday Soc. 1959, 55, 1660–1670.

    Article  CAS  Google Scholar 

  34. P. Morris, R. Martin, J. Inorg. Nucl. Chem. 1970, 32, 2891–2897.

    Article  CAS  Google Scholar 

  35. P. Daniele, P. Amico, G. Ostalcoli, Ann. Chim. (Rome) 1980, 70, 87–97.

    CAS  Google Scholar 

  36. J. Urbanska, H. Kozlowski, B. Kurzak, J. Coord. Chem. 1992, 25, 149–154.

    Article  CAS  Google Scholar 

  37. E. Bottari, M. Festa, Ann. Chim. (Rome) 1993, 83, 315–329.

    CAS  Google Scholar 

  38. S. Sjöberg, Pure Appl. Chem. 1987, 68, 1549–1570.

    Google Scholar 

  39. L. Gasque, S. Bernes, R. Ferrari, G. Mendoza-Diaz, Polyhedron 2002, 21, 935–941.

    Article  CAS  Google Scholar 

  40. A. Gergely, Inorg. Chim. Acta 1981, 56, L75–L76.

    CAS  Google Scholar 

  41. E. V. Raju, H. B. Mathur, J. Inorg. Nucl. Chem. 1968, 30, 2181–2188.

    Article  CAS  Google Scholar 

  42. G. Mukherjee, H. Sahu, J. Ind. Chem. Soc. 2000, 77, 209–212.

    CAS  Google Scholar 

  43. E. Farkas, A. Gergely, E. Kas, J. Inorg. Nucl. Chem. 1981, 43, 1591–1597.

    Article  CAS  Google Scholar 

  44. E. R. Clarke, A. E. Martell, J. Inorg. Nucl. Chem. 1970, 32, 911–926.

    Article  CAS  Google Scholar 

  45. V. Jószai, Z. Nagy, K. Ősz, D. Sanna, G. Di Natale, D. La Mendola, G. Pappalardo, E. Rizzarelli, I. Sóvágó, J. Inorg. Biochem. 2006, 100, 1399–1409.

    Google Scholar 

  46. B. Lenarcik, K. Kurdziel, Pol. J. Chem. 1981, 55, 737–745.

    CAS  Google Scholar 

  47. V. Guantieri, A. Venzo, V. Di Marco, M. Acampora, B. Biondi, Inorg. Chim. Acta 2007, 360, 4051–4057.

    CAS  Google Scholar 

  48. G. Brookes, L. D. Pettit, J. Chem. Soc., Dalton Trans. 1976, 588–594.

    Google Scholar 

  49. R. Abdelhamid, M. K. M. Rabia, A. M. El-Nady, Talanta 1994, 41, 1453–1458.

    Article  CAS  Google Scholar 

  50. T. E. Hofstetter, C. Howder, G. Berden, J. Oomens, P. B. Armentrout, J. Phys. Chem. (B) 2011, 115, 12648–12661.

    CAS  Google Scholar 

  51. I. Sóvágó, A. Gergely, B. Harman, T. Kiss, J. Inorg. Nucl. Chem. 1979, 41, 1629–1633.

    Article  Google Scholar 

  52. J. Benzakour, G. Antonetti, G Ferroni, Bull. Soc. Chim. Belg. 1988, 97, 541–542.

    Article  CAS  Google Scholar 

  53. G. Berthon, Pure Appl. Chem. 1995, 67, 1117–1240.

    CAS  Google Scholar 

  54. G. Lenz, A. Martell, Biochemistry 1964, 3, 745–750.

    Article  PubMed  CAS  Google Scholar 

  55. P. Gockel, H. Vahrenkamp, A. D. Zuberbuehler, Helv. Chim. Acta 1993, 76, 511–520.

    Article  CAS  Google Scholar 

  56. L. Porter, D. Perrin, R. Hay, J. Chem. Soc.(A), 1969, 118–126.

    Google Scholar 

  57. I. Sóvágó, T. Kiss, K. Várnagy, B. Decock-Le Révérend, Polyhedron 1988, 7, 1089–1093.

    Article  Google Scholar 

  58. Y. Sugiura, Y. Hirayama, H. Tanaka, H. Sakurai, J. Inorg. Nucl. Chem. 1975, 37, 2367–70.

    Article  CAS  Google Scholar 

  59. G. Lenz, A. Martell, Inorg. Chem. 1965, 4, 378–384.

    Article  CAS  Google Scholar 

  60. F. Jalilehvand, V. Mah, B. O. Leung, J. Mink, G. M. Bernard, L. Hajba, Inorg. Chem. 2009, 48, 4219–4230.

    Article  PubMed  CAS  Google Scholar 

  61. F. Jalilehvand, B. O. Leung, V. Mah, Inorg. Chem. 2009, 48, 5758–5771.

    Article  PubMed  CAS  Google Scholar 

  62. F. Jalilehvand, Z. Amini, K. Parmar, E. Y. Kang, Dalton Trans. 2011, 12771–12778.

    Google Scholar 

  63. H. Sigel, R. B. Martin, Chem. Rev. 1982, 82, 385–426.

    Article  CAS  Google Scholar 

  64. I. Sóvágó, in Biocoordination Chemistry, Ed K. Burger, Ellis Horwood, New York, 1990, pp. 135–184.

    Google Scholar 

  65. H. Kozlowski, W. Bal, M. Dyba, T. Kowalik-Jankowska, Coord. Chem. Rev. 1999, 184, 319–346.

    Article  CAS  Google Scholar 

  66. I. Sóvágó, K. Ősz, Dalton Trans. 2006, 3841–3854.

    Google Scholar 

  67. G. Marcotrigiano, L. Menabue, G. C. Pellacani, J. Inorg. Nucl. Chem. 1975, 37, 2344–2346.

    Article  CAS  Google Scholar 

  68. D. L. Rabenstein, Can. J. Chem. 1972, 50, 1036–1043.

    Article  CAS  Google Scholar 

  69. J. Vaissermann, M. Quintin, J. Chim. Phys. 1966, 731–741.

    Google Scholar 

  70. A. P. Brunetti, E. J. Burke, M. C. Lim, G. H. Nancollas, J. Sol. Chem. 1972, 1, 153–164.

    Article  CAS  Google Scholar 

  71. B. Jezowska-Trzebiatowska, L. Latos-Grazynski, H. Kozlowski, J. Inorg. Nucl. Chem. 1977, 39, 1269–1273.

    Article  CAS  Google Scholar 

  72. M. J. A. Rainer, B. M. Rode, Inorg. Chim. Acta 1982, 58, 59–64.

    CAS  Google Scholar 

  73. S. M. Wang, R. K. Gilpin, Talanta 1985, 32, 329–333.

    Article  PubMed  CAS  Google Scholar 

  74. S. Sharifi, D. Nori-Shargh, A. Bahadory, J. Braz, Chem. Soc. 2007, 18, 1011–1016.

    CAS  Google Scholar 

  75. A. Vaidyan, P. Bhattacharya, Ind. J. Chem. 1994, 33A, 1003–1007.

    CAS  Google Scholar 

  76. R. Ferrari, S. Bernes, C. R. de Barbarin, G. Mendoza-Diaz, L. Gasque, Inorg. Chim. Acta 2002, 339, 193–201.

    CAS  Google Scholar 

  77. A. Asano, C. M. Sullivan, A. Yanagisawa, H. Kimoto, T. Kurotsu, Anal. Bioanal. Chem. 2002, 374, 1250–1255.

    Article  PubMed  CAS  Google Scholar 

  78. G. Malandrinos, M. Louloudi, N. Hadjiliadis, Inorg. Chim. Acta 2003, 349, 279–283.

    CAS  Google Scholar 

  79. B. Decock-Le Reverend, H. Kozlowski, J. Chim. Phys., Chim. Biol. 1985, 82, 883–890.

    Google Scholar 

  80. T. J. Manning, P. Tonui, A. Miller, S. Toporek, D. Powell, Biochem. Biophys. Res. Comm. 1996, 226, 796–800.

    Article  PubMed  CAS  Google Scholar 

  81. P. Ghosh, M. Wood, J. B. Bonanno, T. Hascall, G. Parkin, Polyhedron 1999, 18, 1107–1113.

    Article  CAS  Google Scholar 

  82. L. M. Berreau, M. M. Makowska-Grzyska, A. M. Arif, Inorg. Chem. 2000, 39, 4390–4391.

    Article  CAS  Google Scholar 

  83. C. G. Ágoston, K. Várnagy, A. Bényei, D. Sanna, G. Micera, I. Sóvágó, Polyhedron 2000, 19, 1849–1857.

    Article  Google Scholar 

  84. P. Tsiveriotis, N. Hadjiliadis, Coord. Chem. Rev. 1999, 190–192, 171–184.

    Article  Google Scholar 

  85. H. Kozlowski, A. Janicka-Klos, P. Stanczak, D. Valensin, G. Valensin, K. Kulon, Coord. Chem. Rev. 2008, 252, 1069–1078.

    Article  CAS  Google Scholar 

  86. G. Arena, G. Pappalardo, I. Sóvágó, E. Rizzarelli, Coord. Chem. Rev. 2012, 256, 3–12.

    Article  CAS  Google Scholar 

  87. C. Kállay, K. Várnagy, G. Malandrinos, N. Hadjiliadis, D. Sanna, I. Sóvágó, Inorg. Chim. Acta, 2009, 362, 935–945.

    Google Scholar 

  88. S. Timári, C. Kállay, K. Ősz, I. Sóvágó, K. Várnagy, Dalton Trans. 2009, 1962–1971.

    Google Scholar 

  89. P. G. Daniele, P. Amico, G. Ostacoli, Inorg. Chim. Acta 1982, 66, 65–70.

    CAS  Google Scholar 

  90. A. R. Sarkar, M. Sarkar, J. Chem. Res. S. 1997, 304–305.

    Google Scholar 

  91. P. G. Daniele, P. Amico, G. Ostacoli, M. Marzona, Annali di Chimica 1983, 73, 299–313.

    CAS  Google Scholar 

  92. W. Bal, J. Christodoulou, P. J. Sadler, A. Tucker, J. Inorg. Biochem. 1998, 70, 33–39.

    CAS  Google Scholar 

  93. P. J. Sadler, J. H. Viles, Inorg. Chem. 1996, 35, 4490–4496.

    Article  PubMed  CAS  Google Scholar 

  94. K. Cherifi, B. Decock Le-Reverend, K. Várnagy, T. Kiss, I. Sóvágó, C. Loucheux, H. Kozlowski, J. Inorg. Biochem. 1990, 38, 69–80.

    CAS  Google Scholar 

  95. H. Kozlowski, B. Decock-Le Reverend, D. Ficheux, C. Loucheux, I. Sóvágó, J. Inorg. Biochem. 1987, 29, 187–197.

    CAS  Google Scholar 

  96. A. Avdeef, J. A. Brown, Inorg. Chim. Acta 1984, 91, 67–73.

    CAS  Google Scholar 

  97. B. J. Goodfellow, M. J. Lima, C. Ascenso, M. Kennedy, R. Sikkink, F. Rusnak, I. Moura, J. J. G. Moura, Inorg. Chim. Acta 1998, 273, 279–287.

    CAS  Google Scholar 

  98. A. Krezel, W. Bal, Acta Biochim. Pol. 46, 1999, 567–580.

    CAS  Google Scholar 

  99. D. D. Perrin, A. E. Watt, Biochim. Biophys. Acta 1971, 230, 96–104.

    Article  CAS  Google Scholar 

  100. A. M. Corrie, M. D. Walker, D. R. Williams, J. Chem. Soc., Dalton Trans. 1976, 1012–1015.

    Google Scholar 

  101. B. J. Fuhr, D. L. Rabenstein, J. Am. Chem. Soc. 1973, 95, 6944–6950.

    Article  PubMed  CAS  Google Scholar 

  102. K. Polec-Pawlak, R. Ruzik, E. Lipiec, Talanta 2007, 72, 1564–1572.

    Article  PubMed  CAS  Google Scholar 

  103. O. Delalande, H. Desvaux, E. Godat, A. Valleix, C. Junot, J. Labarre, Y. Boulard, FEBS J. 2010, 277, 5086–5096.

    Article  PubMed  CAS  Google Scholar 

  104. M. Belcastro, T. Marino, N. Russo, M. Toscano, J. Inorg. Biochem. 2009, 103, 50–57.

    CAS  Google Scholar 

  105. J. Mendieta, M. S. Diaz-Cruz, A. Monjonell, R. Tauler, M. Esteban, Anal. Chim. Acta 1999, 390, 15–25.

    Article  CAS  Google Scholar 

  106. M. S. Diaz-Cruz, J. M. Diaz-Cruz, M. Esteban, Electroanlysis 2002, 14, 899–905.

    Article  CAS  Google Scholar 

  107. M. Erk, B. Raspor, J. Electroanal. Chem. 2001, 502, 174–179.

    CAS  Google Scholar 

  108. A. Munoz, F. Laib, D. H. Petering, C.F. Shaw, J. Biol Inorg. Chem. 1999, 4, 495–507.

    CAS  Google Scholar 

  109. M. Matzapetakis, D. Ghosh, T-C. Weng, J. E. Penner-Hahn, V. L. Pecoraro, J. Biol. Inorg. Chem. 2006, 11, 876–890.

    Google Scholar 

  110. K. Krzywoszynska, M. Rowinska-Zyrek, D. Witkowska, S. Potocki, M. Luczkowski, H. Kozlowski, Dalton Trans. 2011, 40, 10434–10439.

    Article  PubMed  CAS  Google Scholar 

  111. T. M. DeSilva, G. Veglia, F. Porcelli, A. M. Prantner, S. J. Opella, Biopolymers 2002, 64, 189–197.

    Article  PubMed  CAS  Google Scholar 

  112. X. Chen, M. Chu, D. P. Giedroc, J. Biol. Inorg. Chem. 2000, 5, 93–101.

    PubMed  CAS  Google Scholar 

  113. O. I. Leszczyszyn, C. R. J. White, C. A. Blindauer, Mol. Biosyst. 2010, 6, 1592–1603.

    Article  PubMed  CAS  Google Scholar 

  114. C. A. Blindauer, J. Inorg. Biochem. 2008, 102, 507–521.

    CAS  Google Scholar 

  115. N. Romero-Isart, N. Duran, M. Capdevila, P. Gonzalez-Duarte, S. Maspoch, J. L. Torres, Inorg. Chim. Acta 1998, 278, 10–14.

    CAS  Google Scholar 

  116. P. Kotrba, T. Macek, T. Rumi, Coll. Czech. Chem. Comm. 1999, 64, 1057–1068.

    Article  CAS  Google Scholar 

  117. R. Pal, J. P. N. Rai, Appl. Biochem. Biotechn. 2010, 160, 945–963.

    Article  CAS  Google Scholar 

  118. V. Dorcak, A. Krezel, Dalton Trans. 2003, 2253–2259.

    Google Scholar 

  119. B. H. Cruz, J. M. Cruz-Diaz, I. Sestakova, J. Velek, C. Arino, M. Esteban, J. Electroanal. Chem. 2002, 520, 111–118.

    CAS  Google Scholar 

  120. E. Chekmeneva, J. M. Diaz-Cruz, C. Arino, M. Esteban, Electroanal. 2007, 19, 310–317.

    Article  CAS  Google Scholar 

  121. R. Gusmao, S. Cavanillas, C. Arino, J. M. Diaz-Cruz, M. Esteban, Anal. Chem. 2010, 82, 9006–9013.

    Article  CAS  Google Scholar 

  122. R. Gusmao, C. Arino, J. M. Diaz-Cruz, M. Esteban, Analyst 2010, 135, 86–95.

    Article  PubMed  CAS  Google Scholar 

  123. H. Satofuka, T. Fukui, M. Takagi, H. Atomi, T. Imanaka, J. Inorg. Biochem. 2001, 86, 595–602.

    CAS  Google Scholar 

  124. C. G. Ágoston, Z. Miskolczy, Z. Nagy, I. Sóvágó, Polyhedron 2002, 22, 2607–2615.

    Article  CAS  Google Scholar 

  125. A. Cole, C. Furnival, Z.-X. Huang, D. C. Jones, P. M. May, G. L. Smith, J. Whittaker, D. R. Williams, Inorg. Chim. Acta 1985, 108, 165–171.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the projects OTKA 77586, OTKA 72956 and TAMOP 4.2.1/B-09/1/KONV-2010-0007, 4.2.2.B-10/1-2010-0024 (Hungary) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre Sóvágó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sóvágó, I., Várnagy, K. (2013). Cadmium(II) Complexes of Amino Acids and Peptides. In: Sigel, A., Sigel, H., Sigel, R. (eds) Cadmium: From Toxicity to Essentiality. Metal Ions in Life Sciences, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5179-8_9

Download citation

Publish with us

Policies and ethics