Skip to main content

Cyanobacteria in High Latitude Lakes, Rivers and Seas

  • Chapter
  • First Online:
Ecology of Cyanobacteria II

Summary

Cyanobacteria often account for a large and sometimes dominant fraction of phototrophic biomass and primary production in high latitude lakes, ponds, streams and wetlands. Picocyanobacteria are usually the most abundant photosynthetic cell type in the plankton of Arctic lakes and rivers, and in East Antarctic saline lakes they have been recorded at cell concentrations of up to 1.5 × 107 per mL. In striking contrast to their success in high latitude lakes, picocyanobacteria are generally absent or sparse in polar seas, with the exception of regions that receive advective inputs of picocyanobacteria from more favourable growth environments. Colonial bloom-forming cyanobacteria are conspicuously absent from most polar freshwaters, but future climate change may favour their development in some areas via warmer temperatures for growth, more stable water columns that favour gas-vacuolate species and richer nutrient conditions as a result of more active catchment processes. Mat-forming cyanobacteria are a ubiquitous element of polar aquatic ecosystems including lakes, ponds, streams and seeps. These consortia of diverse microbial taxa often occur as benthic crusts and films, and in some locations form luxuriant communities up to tens of cm in thickness. They have many biological features that make them well suited to life in the extreme polar environment, including tolerance of persistent low temperatures, freeze-thaw-cycles, high and low irradiances, UV-exposure and desiccation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen DT, Sumner DY, Hawes I, Webster-Brown J, McKay CP (2011) Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 9:280–293

    Article  CAS  Google Scholar 

  • Asthana RK, Deepali A, Tripathi MK, Srivastava A, Singh AP, Singh SP, Nath G, Srivastava R, Srivastava BS (2009) Isolation and identification of a new antibacterial entity from the Antarctic cyanobacterium Nostoc CCC 537. J Appl Phycol 21:81–88

    Article  CAS  Google Scholar 

  • Bergeron M, Vincent WF (1997) Microbial food web responses to phosphorus and solar UV radiation in a subarctic lake. Aquat Microb Ecol 12:239–249

    Article  Google Scholar 

  • Bergmann MA, Welch HE (1990) Nitrogen-fixation by epilithic periphyton in small arctic lakes in response to experimental nitrogen and phosphorus fertilization. Can J Fish Aquat Sci 47:1545–1550

    Article  CAS  Google Scholar 

  • Bonaventura SM, Vinocur A, Allende L, Pizarro H (2006) Algal structure of the littoral epilithon in lentic water bodies at Hope Bay, Antarctic Peninsula. Polar Biol 29:668–680

    Article  Google Scholar 

  • Bonilla S, Villeneuve V, Vincent WF (2005) Benthic and planktonic algal communities in a high arctic lake: pigment structure and contrasting responses to nutrient enrichment. J Phycol 41:1120–1130

    Article  CAS  Google Scholar 

  • Bonilla S, Rautio M, Vincent WF (2009) Phytoplankton and phytobenthos pigment strategies: implications for algal survival in the changing Arctic. Polar Biol 28:846–861

    Google Scholar 

  • Bottos EM, Vincent WF, Greer CW, Whyte LG (2008) Prokaryotic diversity of arctic ice shelf microbial mats. Environ Microbiol 10:950–966. doi:10.1111/j.1462-2920.2007.01516.x

    Article  PubMed  CAS  Google Scholar 

  • Brambilla E, Hippe H, Hagelstein A, Tindall BJ, Stackebrandt E (2001) 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles 5:23–33

    Article  PubMed  CAS  Google Scholar 

  • Broady PA, Kibblewhite A (1991) Morphological characterization of Oscillatoria (Cyanobacteria) from Ross Island and southern Victoria Land, Antarctica. Antarct Sci 3:35–45

    Article  Google Scholar 

  • Comte K, Sabacka M, Carre-Miouka A, Elster J, Komárek J (2007) Relationships between the Arctic and the Antarctic cyanobacteria; three Phormidium-like strains evaluated by a polyphasic approach. FEMS Microbiol Ecol 59:366–376

    Article  PubMed  CAS  Google Scholar 

  • Cottrell MT, Kirchman DL (2009) Photoheterotrophic microbes in the Arctic Ocean in summer and winter. Appl Environ Microbiol 75:4958–4966

    Article  PubMed  CAS  Google Scholar 

  • Christner BC, Kvitko BH II, Reeve JN (2003) Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183

    PubMed  CAS  Google Scholar 

  • de los Ríos A, Ascaso C, Wierzchos J, Fernández-Valiente E, Quesada A (2004) Microstructural characterization of cyanobacterial mats from the McMurdo Ice Shelf, Antarctica. Appl Environ Microbiol 70:569–580

    Article  CAS  Google Scholar 

  • Doolittle DF, Li WKW, Wood AM (2008) Wintertime abundance of picoplankton in the Atlantic sector of the Southern Ocean. Nova Hedwig 133:147–160

    Google Scholar 

  • Dorador C, Vila I, Imhoff JF, Witzel KP (2008) Cyanobacterial diversity in Salar de Huasco, a high altitude saline wetland in northern Chile: an example of geographical dispersion? FEMS Microbiol Ecol 64:419–432

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Carazo R, Hodgson DA, Convey P, Wilmotte A (2011) Low cyanobacterial diversity in biotopes of the Transantarctic Mountains and Shackleton Range (80–82ºS), Antarctica. FEMS Microbiol Ecol 77:503–517

    Article  PubMed  Google Scholar 

  • Fernández-Valiente E, Quesada A, Howard-Williams C, Hawes I (2001) N2-fixation in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Microb Ecol 42:338–349

    Article  PubMed  Google Scholar 

  • Fernández-Valiente E, Camacho A, Rochera C, Rico E, Vincent WF, Quesada A (2007) Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiol Ecol 59:377–385

    Article  PubMed  CAS  Google Scholar 

  • Foreman CM, Sattler B, Mikucki JA, Porazinska DL, Priscu JC (2007) Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. J Geophys Res Biogeosci 112(G4):1–11, G04S32

    Google Scholar 

  • Gerdel RW, Drouet F (1960) The cyanobacteria of the Thule area, Greenland. Trans Am Microsc Soc 79:256–272

    Article  Google Scholar 

  • Gradinger R, Lenz J (1995) Seasonal occurrence of picocyanobacteria in the Greenland Sea and central Arctic Ocean. Polar Biol 15:447–452

    Article  Google Scholar 

  • Hawes I (1990) Eutrophication and vegetation development in maritime Antarctic lakes. In: Kerry KR, Hempel G (eds) Antarctic ecosystems: ecological change and conservation. Springer, Berlin, pp 83–90, 427 pp

    Google Scholar 

  • Hawes I, Schwarz AM (1999) Photosynthesis in an extreme shade environment: benthic microbial mats from Lake Hoare, a permanently ice-covered Antarctic lake. J Phycol 35:448–459

    Article  CAS  Google Scholar 

  • Hawes I, Schwarz AM (2001) Absorption and utilization of irradiance by cyanobacterial mats in two ice-covered Antarctic lakes with contrasting light climates. J Phycol 37:5–15

    Article  CAS  Google Scholar 

  • Hawes I, Howard-Williams C, Vincent WF (1992) Desiccation and recovery of Antarctic cyanobacterial mats. Polar Biol 12:587–594

    Article  Google Scholar 

  • Hawes I, Safi K, Sorrell B, Webster-Brown J, Arscott D (2011). Summer-winter transitions in Antarctic ponds I. The physical environment. Antarctic Sci 23:235–242

    Article  Google Scholar 

  • Hawes I, Smith R, Howard-Williams C, Schwarz AM (1999) Environmental conditions during freezing, and response of microbial mats in ponds of the McMurdo Ice Shelf, Antarctica. Antarct Sci 11:198–208

    Article  Google Scholar 

  • Heath MW, Wood SA, Ryan KG (2010) Polyphasic assessment of fresh-water benthic mat-forming cyanobacteria isolated from New Zealand. FEMS Microbiol Ecol 73:95–109

    PubMed  CAS  Google Scholar 

  • Hitzfeld BC, Lampert CS, Spaeth N, Mountfort D, Kaspar H, Dietrich DR (2000) Toxin production in cyanobacterial mats from ponds on the McMurdo Ice shelf, Antarctica. Toxicon 38:1731–1748

    Article  PubMed  CAS  Google Scholar 

  • Hodgson DA, Vyverman W, Verleyen E, Sabbe K, Leavitt PR, Taton A, Squier AH, Keely BJ (2004) Environmental factors influencing the pigment composition of in situ benthic microbial communities in east Antarctic lakes. Aquat Microb Ecol 37:247–263

    Article  Google Scholar 

  • Imura S, Bando T, Saito S, Seto K, Kanda H (1999) Benthic moss pillars in Antarctic lakes. Polar Biol 22:137–140

    Article  Google Scholar 

  • Jungblut AD, Neilan BA (2010) NifH gene diversity and expression in a microbial mat community on the McMurdo Ice Shelf, Antarctica. Antarct Sci 22:117–122

    Article  Google Scholar 

  • Jungblut AD, Hawes I, Mountfort D, Hitzfeld B, Dietrich DR, Burns BP, Neilan BA (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ Microbiol 7:519–529

    Article  PubMed  CAS  Google Scholar 

  • Jungblut AD, Lovejoy C, Vincent WF (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4:191–202

    Article  PubMed  CAS  Google Scholar 

  • Kalff J, Kling J, Holmgren SH, Welch HE (1975) Phytoplankton, phytoplankton growth and biomass cycles in an unpolluted and in a polluted lake. Verh Int Ver Limnol 19:487–495

    Google Scholar 

  • Komárek J, Elster J (2008) Ecological background of cyanobacterial assemblages of the northern part of James Ross Island, Antarctica. Pol Polar Res 29:17–32

    Google Scholar 

  • Komárek J, Elster J, Komárek O (2008) Diversity of the cyanobacterial microflora of the northern part of James Ross Island, NW Weddell Sea, Antarctica. Polar Biol 31:853–865

    Article  Google Scholar 

  • Laurion I, Vincent WF (1998) Cell size versus taxonomic composition as determinants of UV sensitivity in natural phytoplankton communities. Limnol Oceanogr 43:1774–1779

    CAS  Google Scholar 

  • Leslie A (1879) The Arctic voyages of Adolf Erik Nordenskiöld. MacMillan and Co., London

    Google Scholar 

  • Li WKW (2009) From cytometry to macroecology: a quarter century quest in microbial oceanography. Aquat Microb Ecol 57:239–251

    Article  Google Scholar 

  • Lionard M, Péquin B, Lovejoy C, Vincent WF (2012) Benthic cyanobacterial mats in the High Arctic: Multi-layer structure and fluorescence responses to osmotic stress. Frontiers Aquat Microbiol. doi:10.3389/fmicb.2012.00140

    Article  CAS  Google Scholar 

  • Lovejoy C, Vincent WF, Bonilla S, Roy S, Martineau MJ, Terrado R, Potvin M, Massana R, Pedros-Alio C (2007) Distribution, phylogeny and growth of cold-adapted picoprasinophytes in arctic seas. J Phycol 43:78–89

    Article  CAS  Google Scholar 

  • Mehnert G, Leunert F, Cirés S, Jöhnk KD, Rücker J, Nixdorf B, Wiedner C (2010) Competitiveness of invasive and native cyanobacteria from temperate freshwaters under various light and temperature conditions. J Plankton Res 32:1009–1021

    Article  CAS  Google Scholar 

  • Michaud AB, Sabacka M, Priscu JC (2012) Cyanobacterial diversity across landscape units in a polar desert: Taylor Valley, Antarctica. FEMS Microbiol Ecol. doi:10.1111/j.1574-6941.2012.01297.x

    Article  CAS  Google Scholar 

  • Mueller DR, Vincent WF (2006) Microbial habitat dynamics and ablation control on the Ward Hunt Ice Shelf. Hydrol Process 20:857–876

    Article  CAS  Google Scholar 

  • Mueller DR, Vincent WF, Bonilla S, Laurion I (2005) Extremophiles, extremotrophs and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiol Ecol 53:73–87

    Article  PubMed  CAS  Google Scholar 

  • Murray J (1910) On collecting at Cape Royds. In: Murray J (ed) British Antarctic expedition 19071909 reports on scientific expeditions, vol 1, Biology. Heinemann, London, pp 1–15

    Google Scholar 

  • Nadeau T, Howard-Williams C, Castenholz RW (1999) Effects of solar UV and visible irradiance on photosynthesis and vertical migration of Oscillatoria sp. (cyanobacteria) in an Antarctic microbial mat. Aquat Microb Ecol 20:231–243

    Article  Google Scholar 

  • Nakai R, Abe T, Baba T, Imura S, Kagoshima H, Kanda H, Kanekiyo A, Kohara Y, Koi A, Nakamura K, Narita T, Niki H, Yanagihara K, Naganuma T (2012) Microflorae of aquatic moss pillars in a freshwater lake, East Antarctica, based on fatty acid and 16S rRNA gene analyses. Polar Biol 35:425–433

    Article  Google Scholar 

  • Novis PM, Smissen RD (2006) Two generic and ecological groups of Nostoc commune in Victoria Land, Antarctica, revealed by AFLP analysis. Antarct Sci 18:573–581

    Article  Google Scholar 

  • Parker BC, Wharton RA (1985) Physiological ecology of blue-green algal mats (modern stromatolites) in Antarctic oasis lakes. Arch Hydrobiol Suppl 71:331–348

    Google Scholar 

  • Petz W, Valbonesi A, Schiftner U, Quesada A, Ellis-Evans JC (2007) Ciliate biogeography in Antarctic and Arctic freshwater ecosystems: endemism or global distribution of species? FEMS Microbiol Ecol 59:396–408

    Article  PubMed  CAS  Google Scholar 

  • Powell LM, Bowman JP, Skerratt JH, Franzmann PD, Burton HR (2005) Ecology of a novel Synechococcus clade occurring in dense populations in saline Antarctic lakes. Mar Ecol Prog Ser 291:65–80

    Article  CAS  Google Scholar 

  • Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CP, Doran PT, Gordon DA, Lanoil BD, Pinckney JL (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280:2095–2098

    Article  PubMed  CAS  Google Scholar 

  • Proteau PJ, Gerwick WH, García-Pichel F, Castenholz R (1993) The structure of scytonemin: an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49:825–829

    Article  PubMed  CAS  Google Scholar 

  • Quayle WC, Peck LS, Peat H, Ellis-Evans JC, Harrigan PR (2002) Extreme responses to climate change in Antarctic lakes. Science 295:645

    Article  PubMed  CAS  Google Scholar 

  • Quesada A, Vincent WF (1997) Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. Eur J Phycol 32:335–342

    Google Scholar 

  • Quesada A, Vincent WF (2012) Cyanobacteria in the cryosphere: snow, ice and extreme cold. In: Whitton BA (ed) Ecology of cyanobacteria II. Springer, Dordrecht, pp, pp

    Google Scholar 

  • Quesada A, Vincent WF, Lean DRS (1999) Community and pigment structure of Arctic cyanobacterial assemblages: the occurrence and distribution of UV-absorbing compounds. FEMS Microbiol Ecol 28:315–323

    Article  CAS  Google Scholar 

  • Quesada A, Fernández-Valiente E, Hawes I, Howard-Williams C (2008) Benthic primary production in polar lakes and rivers. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers. Oxford University Press, Oxford, pp 179–196, 327 pp

    Chapter  Google Scholar 

  • Rae R, Vincent WF (1998) Phytoplankton production in subarctic lake and river ecosystems: development of a photosynthesis-temperature-light model. J Plankton Res 20:1293–1312

    Article  Google Scholar 

  • Rautio M, Vincent WF (2006) Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshw Biol 51:1038–1052

    Article  CAS  Google Scholar 

  • Rautio M, Bonilla S, Vincent WF (2009) UV photoprotectants in arctic zooplankton. Aquat Biol 7:93–105

    Article  Google Scholar 

  • Rezanka T, Nedbalova L, Elster J, Cajthaml T, Sigler K (2009) Very-long-chain iso and anteiso branched fatty acids in N-acylphospha-tidylethanolamines from a natural cyanobacterial mat of Calothrix sp. Phytochemistry 70:655–663

    Article  PubMed  CAS  Google Scholar 

  • Roos J, Vincent WF (1998) Temperature dependence of UV radiation effects on Antarctic cyanobacteria. J Phycol 34:78–85

    Article  Google Scholar 

  • Sabbe K, Hodgson DA, Verleyen E, Taton A, Wilmotte A, Vanhoutte K, Vyverman W (2004) Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshw Biol 49:296–319

    Article  Google Scholar 

  • Schiaffino MR, Unrein F, Gasol J, Farias ME, Estevez C, Balague V, Izaguirre I (2009) Comparative analysis of bacterioplankton assemblages from maritime Antarctic freshwater lakes with contrasting trophic status. Polar Biol 32:923–936

    Article  Google Scholar 

  • Schindler DW (1974) Eutrophication in the high Arctic – Meretta Lake, Cornwallis Island (75°N Lat.). J Fish Res Board Can 31:647–662

    Article  CAS  Google Scholar 

  • Schmidt S, Moskal W, Demora SJ, Howard-Williams C, Vincent WF (1991) Limnological properties of Antarctic ponds during winter freezing. Antarct Sci 3:379–388

    Article  Google Scholar 

  • Shukla SP, Kashyap AK (2003) An assessment of biopotential of three cyanobacterial isolates from Antarctic for carotenoid production. Indian J Biochem Biophys 40:362–366

    PubMed  CAS  Google Scholar 

  • Shukla SP, Singh JS, Kashyap S, Giria DD, Kashyap AK (2008) Antarctic cyanobacteria as a source of phycocyanin. An assessment. Indian J Mar Sci 37:446–449

    Google Scholar 

  • Singh SM, Elster J (2007) Cyanobacteria in Antarctic lake environments: a mini-review. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 303–320, 811 pp

    Chapter  Google Scholar 

  • Singh SP, Kumari S, Rastogi RP, Singh KL, Richa SRP (2010) Photoprotective and biotechnological potentials of cyanobacterial sheath pigment, scytonemin. Afr J Biotechnol 9:580–588

    CAS  Google Scholar 

  • Spaulding SA, McKnight DMM, Smith RL, Dufford R (1994) Phytoplankton population dynamics in perennially ice-covered Lake Fryxell, Antarctica. J Plankton Res 16:527–541

    Article  Google Scholar 

  • Strunecký O, Elster J, Komárek J (2010) Phylogenetic relationships between geographically separate Phormidium cyanobacteria: is there a link between north and south polar regions? Polar Biol. doi:10.1007/s00300-010-0834-8

  • Sutherland S (2009) Microbial mat communities in response to recent changes in the physiochemical environment of the meltwater ponds on the McMurdo Ice Shelf, Antarctica. Polar Biol 32:1023–1032

    Article  Google Scholar 

  • Tanabe Y, Ohtan S, Kasamatsu N, Fukuchi M, Kudoh S (2010) Photophysiological responses of phytobenthic communities to the strong light and UV in Antarctic shallow lakes. Polar Biol 33:85–100

    Article  Google Scholar 

  • Tang EPY, Vincent WF (1999) Strategies of thermal adaptation by high latitude cyanobacteria. New Phytol 142:315–323

    Article  Google Scholar 

  • Tang EPY, Vincent WF (2000) Effects of daylength and temperature on the growth and photosynthesis of an Arctic cyanobacterium Schizothrix calcicola (Oscillatoriaceae). Eur J Phycol 35:263–272

    Article  Google Scholar 

  • Tang EPY, Tremblay R, Vincent WF (1997) Cyanobacterial dominance of polar freshwater ecosystems: are high latitude mat-formers adapted to the low temperature environment? J Phycol 33:171–181

    Article  Google Scholar 

  • Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169

    Article  PubMed  CAS  Google Scholar 

  • Taton A, Grubisic S, Balthazart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006a) Biogeographical distribution and ecological range of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289

    Article  PubMed  CAS  Google Scholar 

  • Taton A, Grubisic S, Ertz D, Hodgson DA, Piccardi R, Biondi N, Tredici MR, Mainini M, Losi D, Marinelli F, Wilmotte A (2006b) Polyphasic study of Antarctic cyanobacterial strains. J Phycol 42:1257–1270

    Article  CAS  Google Scholar 

  • Taylor G (1916) With Scott. The silver lining. Dodd Mead and Co., New York

    Book  Google Scholar 

  • Toro M, Camacho A, Rochera C, Rico E, Bañón M, Fernández-Valiente E, Marco E, Justel A, Avendaño MC, Ariosa Y, Vincent WF, Quesada A (2007) Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in maritime Antarctica. Polar Biol 30:635–649

    Article  Google Scholar 

  • Vallières C, Retamal L, Osburn C, Vincent WF (2008) Bacterial production and microbial food web structure in a large arctic river and the coastal Arctic Ocean. J Mar Syst 74:756–773

    Article  Google Scholar 

  • Van Hove P, Vincent WF, Galand PE, Wilmotte A (2008) Abundance and diversity of picocyanobacteria in high arctic lakes and fjords. Algol Stud 126:209–227

    Article  CAS  Google Scholar 

  • Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2010) Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnol Oceanogr 55:1901–1911

    Google Scholar 

  • Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2012) Metagenomic analysis of stress genes in microbial mat communities from extreme Arctic and Antarctic environments. Appl Environ Microbiol 78:49–559

    Google Scholar 

  • Veillette J, Martineau M-J, Antoniades D, Vincent WF (2011) Effects of loss of perennial lake ice on mixing and phytoplankton dynamics: insights from High Arctic Canada. Ann Glaciol 51:56–70

    Article  Google Scholar 

  • Velázquez D, Rochera C, Camacho A, Quesada A (2011) Temperature effects on Antarctic non-marine phototrophic communities. Polar Biol 34:1045–1055

    Article  Google Scholar 

  • Verleyen E, Sabbe K, Hodgson DA, Grubisic S, Taton A, Cousin S, Wilmotte A, De Wever A, Van der Gucht K, Vyverman W (2010) Structuring effects of climate-related environmental factors on Antarctic microbial mat communities. Aquat Microb Ecol 59:11–24

    Article  Google Scholar 

  • Vézina S, Vincent WF (1997) Arctic cyanobacteria and limnological properties of their environment: Bylot Island, Northwest Territories, Canada. (73°N, 80°W). Polar Biol 17:523–534

    Article  Google Scholar 

  • Villeneuve V, Vincent WF, Komárek J (2001) Community structure and microhabitat characteristics of cyanobacterial mats in an extreme high Arctic environment: Ward Hunt Lake. In: Elster J, Seckbach J, Vincent WF, Lhotsky O (eds) Algae and extreme environments. Nova Hedwig Beih 123:199–224

    Google Scholar 

  • Vincent WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  • Vincent WF (2000) Cyanobacterial dominance in the polar regions. In: Whitton BA, Potts M (eds) Ecology of the cyanobacteria: their diversity in time and space. Kluwer, Dordrecht, pp 321–340, 669 pp

    Google Scholar 

  • Vincent WF (2007) Cold tolerance in cyanobacteria and life in the cryosphere. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Heidelberg, pp 289–304, 811 pp

    Google Scholar 

  • Vincent WF (2009) Cyanobacteria. In: Likens GE (ed) Encyclopedia of inland waters, vol 3. Elsevier, Oxford, pp 226–232, 859 pp

    Chapter  Google Scholar 

  • Vincent WF (2010) Microbial ecosystem responses to global warming in the Arctic. ISME J 4:191–202. doi:10.1038/ismej.2010.108

    Google Scholar 

  • Vincent WF, Downes MT, Castenholz RW, Howard-Williams C (1993) Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. Eur J Phycol 28:213–221

    Article  Google Scholar 

  • Vincent WF, Gibson JAE, Pienitz R, Villeneuve V, Broady PA, Hamilton PB, Howard-Williams C (2000) Ice shelf microbial ecosystems in the high Arctic and implications for life on snowball Earth. Naturwissenschaften 87:137–141

    Article  PubMed  CAS  Google Scholar 

  • Vincent WF, Mueller DR, Bonilla S (2004a) Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the High Arctic. Cryobiology 48:103–112

    Article  PubMed  Google Scholar 

  • Vincent WF, Mueller D, Van Hove P, Howard-Williams C (2004b) Glacial periods on early Earth and implications for the evolution of life. In: Seckbach J (ed) Origins: genesis, evolution and diversity of life. Kluwer Academic Publishers, Dordrecht, pp 481–499, 707 pp

    Google Scholar 

  • Vincent WF, Quesada A (1994) Ultraviolet radiation effects on cyanobacteria: implications for Antarctic microbial ecosystems. In: Weiler S, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, DC, pp 111–124, 257 pp

    Chapter  Google Scholar 

  • Vincent WF, Vincent CL (1982) Factors controlling algal production in Lake Vanda (77°S). Can J Fish Aquat Sci 39:1602–1609

    Article  Google Scholar 

  • Vopel K, Hawes I (2006) Photosynthetic performance of benthic microbial mats in Lake Hoare, Antarctica. Limnol Oceanogr 51:1801–1812

    Article  Google Scholar 

  • Waleron M, Waleron K, Vincent WF, Wilmotte A (2007) Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean. FEMS Microbiol Ecol 59:356–365

    Article  PubMed  CAS  Google Scholar 

  • Welch HE, Legault JA, Kling HJ (1989) Phytoplankton, nutrients and primary production in fertilized and natural lakes at Saqvaqjuaq, NWT. Can J Fish Aquat Sci 46:90–107

    Article  Google Scholar 

  • Wharton RA Jr, Parker BC, Simmons GM Jr (1983) Distribution, species composition and morphology of algal mats in Antarctic dry valley lakes. Phycologia 22:355–365

    Article  Google Scholar 

  • Wood SA, Mountfort D, Selwood AI, Holland PT, Puddick J, Cary SC (2008) Widespread distribution and identification of eight novel microcystins in Antarctic cyanobacterial mats. Appl Environ Microbiol 74:7243–7251

    Article  PubMed  CAS  Google Scholar 

  • Wynn-Williams DD (2000) Cyanobacteria in deserts- life at the limit? In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 341–366, 669 pp

    Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the Ministry of Science and Innovation (Spain) by grant POL2006-06,635, the Natural Sciences and Engineering Research Council of Canada, and the Network of Centres of Excellence program ArcticNet. We thank David Velázquez and Anne Jungblut for comments on the manuscript, and are especially grateful to Bill Li for providing Figs. 13.1 and 13.2, and to Dale T. Andersen for underwater photographic and video contributions to the online article associated with this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warwick F. Vincent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vincent, W.F., Quesada, A. (2012). Cyanobacteria in High Latitude Lakes, Rivers and Seas. In: Whitton, B. (eds) Ecology of Cyanobacteria II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_13

Download citation

Publish with us

Policies and ethics