Skip to main content

The Role of Sulfate Reduction in Stromatolites and Microbial Mats: Ancient and Modern Perspectives

  • Chapter
  • First Online:
STROMATOLITES: Interaction of Microbes with Sediments

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 18))

Abstract

Sulfate reduction is an evolutionarily ancient process and sulfate-reducing microorganisms were likely key members of Precambrian stromatolite communities, as they are in modern photosynthetic microbial mats. Some of the highest rates of sulfate reduction ever measured have been observed in hypersaline microbial mats, supporting the view that sulfate respiration is a dominant carbon mineralization process in these communities. Sulfate consumption and the alkalinity that results from carbon utilization have also been linked to carbonate precipitation in lithified mats. Diverse groups of sulfate-reducing bacteria (SRB), primarily members of the Deltaproteobacteria, have been found to live in stratified zones in microbial mats, some localized near the surface despite high levels of oxygenic photosynthesis by cyanobacteria. Culture studies have shown that some SRB can switch to aerobic metabolism under microaerophilic conditions; however, it is not known how SRB tolerate the very high levels found in situ. Possible strategies involve aggregation and diel migration. Recent application of technologies such as nanometer-scale secondary ion mass spectrometry (nanoSIMS) and metagenomics to mats have enabled ultra fine-scale mapping of sulfate reduction activity and have broadened our understanding of how sulfur metabolism fits into the broader picture of microbial diversity and functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, M.A., Goh, F., Burns, B.P. and Neilan, B.A. (2009) Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology 7: 82–96.

    Article  PubMed  CAS  Google Scholar 

  • Andres, M.S., Sumner, D.Y., Reid, R.P. and Swart, P.K. (2006) Isotopic fingerprints of microbial respiration in aragonite from Bahamian stromatolites. Geology 34: 973–976.

    Article  CAS  Google Scholar 

  • Bauld, J., Chambers, L.A. and Skyring, G.W. (1979) Primary productivity, sulfate reduction and sulfur isotope fractionation in algal mats and sediments of Hamelin Pool, Shark Bay, Western Australia. Aust. J. Mar. Freshw. Res. 30: 753–764.

    Article  CAS  Google Scholar 

  • Baumgartner, L.K., Reid, R.P., Dupraz, C., Decho, A.W., Buckley, D.H., Spear, J.R., et al. (2006) Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment. Geol. 185: 131–145.

    Article  CAS  Google Scholar 

  • Bebout, B.M. and Garcia-Pichel, F. (1995) UV-B-induced vertical migrations of cyanobacteria in a microbial mat. Appl. Environ. Microbiol. 61: 4215–4222.

    PubMed  CAS  Google Scholar 

  • Bebout, B.M., Carpenter, S.P., Des Marais, D.J., Discipulo, M., Embaye, T., Garcia-Pichel, F., et al. (2002) Long-term manipulations of intact microbial mat communities in a greenhouse collaboratory: simulating Earth’s present and past field environments. Astrobiology 2: 383–402.

    Article  PubMed  CAS  Google Scholar 

  • Bebout, B.M., Hoehler, T.M., Thamdrup, B., Albert, D., Carpenter, S.P., Hogan, M., et al. (2004) Methane production by microbial mats under low sulfate concentrations. Geobiology 2: 87–96.

    Article  CAS  Google Scholar 

  • Blank, C.E. (2004) Evolutionary timing of the origins of mesophilic sulphate reduction and oxygenic photosynthesis: a phylogenomic dating approach. Geobiology 2: 1–20.

    Article  CAS  Google Scholar 

  • Bosak, T. and Newman, D.K. (2003) Microbial nucleation of calcium carbonate in the Precambrian. Geology 31: 577–580.

    Article  CAS  Google Scholar 

  • Braissant, O., Decho, A.W., Dupraz, C., Glunk, C., Przekop, K.M. and Visscher, P.T. (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5: 401–411.

    Article  CAS  Google Scholar 

  • Braissant, O., Decho, A.W., Przekop, K.M., Gallagher, K.L., Glunk, C., Dupraz, C. and Visscher, P.T. (2009) Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiol. Ecol. 67: 293–307.

    Article  PubMed  CAS  Google Scholar 

  • Breitbart, M., Hoare, A., Nitti, A., Siefert, J., Haynes, M., Dinsdale, E., et al. (2009) Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Cienegas, Mexico. Environ. Microbiol. 11: 16–34.

    Article  PubMed  CAS  Google Scholar 

  • Burns, B.P., Goh, F., Allen, M. and Neilan, B.A. (2004) Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environ. Microbiol. 6: 1096–1101.

    Article  PubMed  CAS  Google Scholar 

  • Canfield, D.E. and Des Marais, D.J. (1991) Aerobic sulfate reduction in microbial mats. Science 251: 1471–1473.

    Article  PubMed  CAS  Google Scholar 

  • Canfield, D.E. and Des Marais, D.J. (1993) Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochim. Cosmochim. Acta 57: 3971–3984.

    Article  PubMed  CAS  Google Scholar 

  • Canfield, D.E. and Thamdrup, B. (1994) The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266: 1973–1975.

    Article  PubMed  CAS  Google Scholar 

  • Canfield, D.E., Habicht, K.S. and Thamdrup, B. (2000) The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288: 658–661.

    Article  PubMed  CAS  Google Scholar 

  • Casillas-Martinez, L., Gonzalez, M.L., Fuentes-Figueroa, Z., Castro, C.M., Nieves-Mendez, D., Hernandez, C., et al. (2005) Community structure, geochemical characteristics and mineralogy of a hypersaline microbial mat, Cabo Rojo, PR. Geomicrobiol. J. 22: 269–281.

    Article  CAS  Google Scholar 

  • Catling, D.C., Zahnle, K.J. and McKay, C. (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early earth. Science 293: 839–843.

    Article  PubMed  CAS  Google Scholar 

  • Chafetz, H.S. (1986) Marine peloids; a product of bacterially induced precipitation of calcite. J. Sediment. Res. 56: 812–817.

    CAS  Google Scholar 

  • Cypionka, H. (2000) Oxygen respiration by Desulfovibrio species. Annu. Rev. Microbiol. 54: 827–848.

    Article  PubMed  CAS  Google Scholar 

  • Cypionka, H., Widdel, F. and Pfennig, N. (1985) Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiol. Ecol. 31: 39–45.

    Article  CAS  Google Scholar 

  • Decho, A.W., Visscher, P.T. and Reid, R.P. (2005) Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219: 71–86.

    Article  Google Scholar 

  • Des Marais, D.J. (1995) The biogeochemistry of hypersaline microbial mats, In: J. Jones (ed.) Advances in Microbial Ecology. Plenum Press, New York, pp. 251–274.

    Chapter  Google Scholar 

  • Des Marais, D.J. (2000) When did photosynthesis emerge on Earth? Science 289: 1703–1705.

    Google Scholar 

  • Des Marais, D.J. (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biol. Bull. 204: 160–167.

    Article  PubMed  CAS  Google Scholar 

  • Desnues, C., Rodriguez-Brito, B., Rayhawk, S., Kelley, S., Tran, T., Haynes, M., et al. (2008) Biodiversity and biogeography of phages in modern stromatolites and thrombolites. Nature 452: 340–343.

    Article  PubMed  CAS  Google Scholar 

  • Detmers, J., Bruchert, V., Habicht, K.S. and Kuever, J. (2001) Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Appl. Environ. Microbiol. 67: 888–894.

    Article  PubMed  CAS  Google Scholar 

  • Dilling, W. and Cypionka, H. (1990) Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol. Lett. 71: 123–127.

    CAS  Google Scholar 

  • Dillon, J.G., Fishbain, S., Miller, S.R., Bebout, B.M., Habicht, K.S., Webb, S.M. and Stahl, D.A. (2007) High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms. Appl. Environ. Microbiol. 73: 5218–5226.

    Article  PubMed  CAS  Google Scholar 

  • Dillon, J.G., Miller, S., Bebout, B., Hullar, M., Pinel, N. and Stahl, D.A. (2009) Spatial and temporal variability in a stratified hypersaline microbial mat community. FEMS Microbiol. Ecol. 68: 46–58.

    Article  PubMed  CAS  Google Scholar 

  • Dupraz, C. and Visscher, P.T. (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol. 13: 429–438.

    Article  PubMed  CAS  Google Scholar 

  • Falcón, L., Cerritos, R., Eguiarte, L. and Souza, V. (2007) Nitrogen fixation in microbial mat and stromatolite communities from Cuatro Cienegas, Mexico. Microb. Ecol. 54: 363–373.

    Article  PubMed  Google Scholar 

  • Fike, D., Ussler, W., Eiler, J., Guan, Y.B. and Orphan, V. (2007) Micron-scale resolution of sulfur cycling in a microbial mat. Geochim. Cosmochim. Acta 71: A278–A278.

    Google Scholar 

  • Fourçans, A., Solé, A., Diestra, E., Ranchou-Peyruse, A., Esteve, I., Caumette, P. and Duran, R. (2006) Vertical migration of phototrophic bacterial populations in a hypersaline microbial mat from Salins-de-Giraud (Camargue, France). FEMS Microbiol. Ecol. 57: 367–377.

    Article  PubMed  Google Scholar 

  • Fründ, C. and Cohen, Y. (1992) Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Appl. Environ. Microbiol. 58: 70–77.

    PubMed  Google Scholar 

  • Garcia-Pichel, F., Mechling, M. and Castenholz, R.W. (1994) Diel migrations of microorganisms within a benthic, hypersaline mat community. Appl. Environ. Microbiol. 60: 1500–1511.

    PubMed  CAS  Google Scholar 

  • Garcia-Pichel, F., Al-Horani, F.A., Farmer, J.D., Ludwig, R. and Wade, B.D. (2004) Balance between microbial calcification and metazoan bioerosion in modern stromatolitic oncolites. Geobiology 2: 49–57.

    Article  CAS  Google Scholar 

  • Grotzinger, J.P. and Knoll, A.H. (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci. 27: 313–358.

    Article  PubMed  CAS  Google Scholar 

  • Habicht, K.S., Gade, M., Thamdrup, B., Berg, P. and Canfield, D.E. (2002) Calibration of sulfate levels in the Archean ocean. Science 298: 2372–2374.

    Article  PubMed  CAS  Google Scholar 

  • Jonkers, H.M., Ludwig, R., De Wit, R., Pringault, O., Muyzer, G., Niemann, H., et al. (2003) Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: ‘La Salada de Chiprana’ (NE Spain). FEMS Microbiol. Ecol. 44: 175–189.

    Article  PubMed  CAS  Google Scholar 

  • Jonkers, H.M., Koh, I.O., Behrend, P., Muyzer, G. and de Beer, D. (2005) Aerobic organic carbon mineralization by sulfate-reducing bacteria in the oxygen-saturated photic zone of a hypersaline microbial mat. Microb. Ecol. 49: 291–300.

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen, B.B. and Cohen, Y. (1977) Solar Lake (Sinai). 5. The sulfur cycle of the benthic cyanobacterial mats. Limnol. Oceanogr. 22: 657–666.

    Article  Google Scholar 

  • Kakegawa, T. and Nanri, H. (2006) Sulfur and carbon isotope analyses of 2.7 Ga stromatolites, cherts and sandstones in the Jeerinah Formation, Western Australia. Precambrian Res. 148: 115–124.

    Article  CAS  Google Scholar 

  • Kasting, J.F. and Siefert, J.L. (2002) Life and the evolution of Earth’s atmosphere. Science 296: 1066–1068.

    Article  PubMed  CAS  Google Scholar 

  • Klein, M., Friedrich, M., Roger, A.J., Hugenholtz, P., Fishbain, S., Abicht, H., et al. (2001) Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J. Bacteriol. 183: 6028–6035.

    Article  PubMed  CAS  Google Scholar 

  • Krekeler, D., Sigalevich, P., Teske, A., Cypionka, H. and Cohen, Y. (1997) A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov. Arch. Microbiol. 167: 369–375.

    Article  CAS  Google Scholar 

  • Krekeler, D., Teske, A. and Cypionka, H. (1998) Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiol. Ecol. 25: 89–96.

    CAS  Google Scholar 

  • Krumbein, W.E. (1979) Photolithotropic and chemoorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (Gulf of Aqaba, Sinai). Geomicrobiol. J. 1: 139–203.

    Article  CAS  Google Scholar 

  • Kruschel, C. and Castenholz, R.W. (1998) The effect of solar UV and visible irradiance on the vertical movements of cyanobacteria in microbial mats of hypersaline waters. FEMS Microbiol. Ecol. 27: 53–72.

    Article  CAS  Google Scholar 

  • Kunin, V., Raes, J., Harris, J.K., Spear, J.R., Walker, J.J., Ivanova, N., et al. (2008) Millimeter-scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat. Mol. Syst. Biol. 4: 198.

    Article  PubMed  Google Scholar 

  • Ley, R.E., Harris, J.K., Wilcox, J., Spear, J.R., Miller, S.R., Bebout, B.M., et al. (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl. Environ. Microbiol. 72: 3685–3695.

    Article  PubMed  CAS  Google Scholar 

  • Lyons, W.B., Long, D.T., Hines, M.E., Gaudette, H.E. and Armstrong, P.B. (1984) Calcification of cyanobacterial mats in Solar Lake, Sinai. Geology 12: 623–626.

    Article  CAS  Google Scholar 

  • Minz, D., Fishbain, S., Green, S.J., Muyzer, G., Cohen, Y., Rittmann, B.E. and Stahl, D.A. (1999a) Unexpected population distribution in a microbial mat community: sulfate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia. Appl. Environ. Microbiol. 65: 4659–4665.

    PubMed  CAS  Google Scholar 

  • Minz, D., Flax, J.L., Green, S.J., Muyzer, G., Cohen, Y., Wagner, M., et al. (1999b) Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl. Environ. Microbiol. 65: 4666–4671.

    PubMed  CAS  Google Scholar 

  • Moezelaar, R., Buvank, S.M. and Stal, L. (1996) Fermentation and sulfur reduction in the mat-building cyanobacterium Microcoleus chthonoplates. Appl. Environ. Microbiol. 62: 1752–1758.

    PubMed  CAS  Google Scholar 

  • Nisbet, E.G. and Fowler, C.M.R. (1999) Archaean metabolic evolution of microbial mats. Proc. R. Soc. Lond. B 266: 2375–2382.

    Article  Google Scholar 

  • Olson, J.M. and Pierson, B.K. (1986) Photosynthesis 3.5 thousand million years ago. Photosynth Res. 9: 251–259.

    Article  CAS  Google Scholar 

  • Orphan, V.J., Jahnke, L.L., Embaye, T., Turk, K.A., Pernthaler, A., Summons, R.E. and Des Marais, D.J. (2008) Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California. Geobiology 6: 376–393.

    Article  PubMed  CAS  Google Scholar 

  • Paerl, H.W., Steppe, T.F. and Reid, R.P. (2001) Bacterially mediated precipitation in marine stromatolites. Environ. Microbiol. 3: 123–130.

    Article  PubMed  CAS  Google Scholar 

  • Papineau, D., Walker, J.J., Mojzsis, S.J. and Pace, N.R. (2005) Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl. Environ. Microbiol. 71: 4822–4832.

    Article  PubMed  CAS  Google Scholar 

  • Philippot, P., Van Zuilen, M., Lepot, K., Thomazo, C., Farquhar, J. and Van Kranendonk, M.J. (2007) Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 317: 1534–1537.

    Article  PubMed  CAS  Google Scholar 

  • Postgate, J. (1959) Sulphate reduction by bacteria. Annu. Rev. Microbiol. 13: 505–520.

    Article  Google Scholar 

  • Reid, R.P., Visscher, P.T., Decho, A.W., Stolz, J.F., Bebout, B.M., Dupraz, C., et al. (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406: 989–992.

    Article  PubMed  CAS  Google Scholar 

  • Riding, R. (1982) Cyanophyte calcification and changes in ocean chemistry. Nature 299: 814–815.

    Article  Google Scholar 

  • Risatti, J.B., Chapman, W.C. and Stahl, D.A. (1994) Community structure of a microbial mat: the phylogenetic dimension. Proc. Natl. Acad. Sci. U.S.A. 91: 10173–10177.

    Article  PubMed  CAS  Google Scholar 

  • Sahl, J.W., Pace, N.R. and Spear, J.R. (2008) Comparative molecular analysis of endoevaporitic microbial communities. Appl. Environ. Microbiol. 74: 6444–6446.

    Article  PubMed  CAS  Google Scholar 

  • Schidlowski, M. (1979) Antiquity and evolutionary status of bacterial sulfate reduction: sulfur isotope evidence. Orig. Life Evol. Biosph. 9: 299–311.

    Article  CAS  Google Scholar 

  • Shen, Y. and Buick, R. (2004) The antiquity of microbial sulfate reduction. Earth Sci. Rev. 64: 243–272.

    Article  CAS  Google Scholar 

  • Shen, Y., Buick, R. and Canfield, D.E. (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410: 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Sigalevich, P., Baev, M.V., Teske, A. and Cohen, Y. (2000) Sulfate reduction and possible aerobic metabolism of the sulfate-reducing bacterium Desulfovibrio oxyclinae in a chemostat coculture with Marinobacter sp. Strain MB under exposure to increasing oxygen concentrations. Appl. Environ. Microbiol. 66: 5013–5018.

    Article  PubMed  CAS  Google Scholar 

  • Skyring, G.W. (1984) Sulfate reduction in marine sediments associated with cyanobacterial mats in Australia, In: Y. Cohen, R. Castenholz and H. Halvorson (eds.) Microbial Mats: Stromatolites. Alan R. Liss, New York, pp. 265–275.

    Google Scholar 

  • Sørensen, K.B., Canfield, D.E. and Oren, A. (2004) Salinity responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl. Environ. Microbiol. 70: 1608–1616.

    Article  PubMed  Google Scholar 

  • Sørensen, K.B., Canfield, D.E., Teske, A.P. and Oren, A. (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl. Environ. Microbiol. 71: 7352–7365.

    Article  PubMed  Google Scholar 

  • Souza, V., Espinosa-Asuar, L., Escalante, A.E., Eguiarte, L.E., Farmer, J., Forney, L., et al. (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc. Natl. Acad. Sci. U.S.A. 103: 6565–6570.

    Article  PubMed  CAS  Google Scholar 

  • Stal, L.J. (1994) Microbial Mats in coastal environments, In: L. Stal and P. Caumette (eds.) Microbial Mats. Springer-Verlag, Berlin, pp. 21–32.

    Chapter  Google Scholar 

  • Stal, L.J. (2001) Coastal microbial mats: the physiology of a small-scale ecosystem. S. Afr. J. Bot. 67: 399–410.

    CAS  Google Scholar 

  • Stal, L.J. (2003) Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiol. J. 20: 463–478.

    Article  CAS  Google Scholar 

  • Steele, H.L. and Streit, W.R. (2005) Metagenomics: advances in ecology and biotechnology. FEMS Microbiol. Lett. 247: 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Teal, C.S., Mazzullo, S.J. and Bischoff, W.D. (2000) Dolomitization of Holocene shallow-marine deposits mediated by sulfate reduction and methanogenesis in normal-salinity seawater, northern Belize. J. Sediment. Res. 70: 649–663.

    Article  CAS  Google Scholar 

  • Teske, A., Ramsing, N.B., Habicht, K., Fukui, M., Kåver, J., Jørgensen, B.B. and Cohen, Y. (1998) Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). Appl. Environ. Microbiol. 64: 2943–2951.

    PubMed  CAS  Google Scholar 

  • Tyson, G.W., Chapman, J., Hugenholtz, P., Allen, E.E., Ram, R.J., Richardson, P.M., et al. (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428: 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Ueno, Y., Ono, S., Rumble, D. and Maruyama, S. (2008) Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archean. Geochim. Cosmochim. Acta 72: 5675–5691.

    Article  CAS  Google Scholar 

  • van Lith, Y., Vasconcelos, C., Warthmann, R., Martins, J.C.F. and McKenzie, J.A. (2002) Bacterial sulfate reduction and salinity: two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil). Hydrobiologia 485: 35–49.

    Article  Google Scholar 

  • van Lith, Y., Warthmann, R., Vasconcelos, C. and McKenzie, J.A. (2003) Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation. Sedimentology 50: 237–245.

    Article  Google Scholar 

  • Vasconcelos, C. and McKenzie, J.A. (1997) Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J. Sediment. Res. 67: 378–390.

    CAS  Google Scholar 

  • Vasconcelos, C., McKenzie, J.A., Bernasconi, S., Grujic, D. and Tiens, A.J. (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377: 220–222.

    Article  CAS  Google Scholar 

  • Villanueva, L., Navarrete, A., Urmeneta, J., White, D.C. and Guerrero, R. (2007) Analysis of diurnal and vertical microbial diversity of a hypersaline microbial mat. Arch. Microbiol. 188: 137–146.

    Article  PubMed  CAS  Google Scholar 

  • Visscher, P.T., Reid, R.P., Bebout, B.M., Hoeft, S.E., Macintyre, I.G. and Thompson, J.A. (1998) Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling. Am. Mineral. 83: 1482–1493.

    CAS  Google Scholar 

  • Visscher, P.T., Gritzer, R.F. and Leadbetter, E.R. (1999) Low-molecular-weight sulfonates, a major substrate for sulfate reducers in marine microbial mats. Appl. Environ. Microbiol. 65: 3272–3278.

    PubMed  CAS  Google Scholar 

  • Visscher, P.T., Reid, R.P. and Bebout, B.M. (2000) Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28: 919–922.

    Article  CAS  Google Scholar 

  • Wagner, M., Roger, A.J., Flax, J.L., Brusseau, G.A. and Stahl, D.A. (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180: 2975–2982.

    PubMed  CAS  Google Scholar 

  • Walter, M.R. (1994) Stromatolites: the main geological source of information on the evolution of the early benthos, In: S. Bengston (ed.) Early Life on Earth. Columbia University Press, New York, pp. 270–286.

    Google Scholar 

  • Ward, D.M. and Olson, G.J. (1980) Terminal processes in the anaerobic degradation of an algal-bacterial mat in a high-sulfate hot spring. Appl. Environ. Microbiol. 40: 67–74.

    PubMed  CAS  Google Scholar 

  • Warthmann, R., van Lith, Y., Vasconcelos, C., McKenzie, J.A. and Karpoff, A.M. (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28: 1091–1094.

    Article  CAS  Google Scholar 

  • Widdel, F. (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria, In: A. Zehnder (ed.) Biology of Anaerobic Microorganisms. Wiley, New York, pp. 469–575.

    Google Scholar 

  • Wright, D.T. (1999) The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sediment. Geol. 126: 147–157.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the support and mentorship of Dr. David Stahl who introduced me to the amazing world of sulfate-reducing bacteria. The author’s work in Dr Stahl’s lab, upon which some of this is based, was supported by NSF-IGERT grant (DGE-9870713), NSF grant (DEB-0213186) and NASA NAI grant (NCC2-1273). He also acknowledges the editors Dr. Vinod C. Tewari and Dr. Joseph Seckbach for their kind invitation to contribute this chapter as well as the insightful suggestions for improvement by two peer reviewers Dr. Andreas Teske and Dr. Harald Strauss.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse G. Dillon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dillon, J.G. (2011). The Role of Sulfate Reduction in Stromatolites and Microbial Mats: Ancient and Modern Perspectives. In: Tewari, V., Seckbach, J. (eds) STROMATOLITES: Interaction of Microbes with Sediments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0397-1_25

Download citation

Publish with us

Policies and ethics