Skip to main content

Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer’s disease and Down Syndrome

  • Chapter
Protein Expression in Down Syndrome Brain

Summary

Human peroxiredoxin (Prx) play important roles in eliminating hydrogen peroxide generated during cellular mechanisms using electrons from thioredoxin (Trx). Oxidative stress induced by reactive oxygen species (ROS) such as hydrogen peroxide has been implicated in the pathogenesis of several neurodegenerative diseases. We applied the proteomic approach to study protein levels of three subtypes of human Prx in brain regions from patients with Alzheimer’s disease (AD) and Down Syndrome (DS). Protein levels of Prx-I and Prx-II were significantly increased in AD and DS. Protein levels of Prx-III, a mitochondrial protein, however, were significantly decreased. We conclude that increased protein levels of Prx-I and Prx-II could provide protection against neuronal cell death induced by hydrogen peroxide. Decreased protein levels of Prx-III could be caused by mitochondrial damage shown in AD and DS. Showing upregulated Prx protein levels provides evidence for the involvement of ROS in the pathogenesis of AD and DS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler V, Yin Z, Tew KD, Ronai Z (1999) Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18: 222: 6104–6111

    Article  PubMed  CAS  Google Scholar 

  • Araki M, Nanri H, Ejima K, Murasato Y, Fujiwara T, Nakashima Y, Ikeda M (1999) Antioxidant function of the mitochondrial protein SP-22 in the cardiovascular system. J Biol Chem 274: 2271–2278

    Article  PubMed  CAS  Google Scholar 

  • Aylward EH, Habbak R, Warren AC, Pulsifer MB, Barta PE, Jerram M, Pearlson GD (1997) Cerebellar volume in adults with Down syndrome. Arch Neurol 54: 209–212

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Brugge K, Nichols S, Saitoh T, Trauner D (1999) Correlations of glutathione peroxidase activity with memory impairment in adults with Down syndromes. Biol Psychiatry 46: 1682–1689

    Article  PubMed  CAS  Google Scholar 

  • Busciglio J, Yankner BA (1995) Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378: 776–779

    Article  PubMed  CAS  Google Scholar 

  • Cairns NJ (1999) Neuropathology. J Neural Transm [Suppl] 57: 61–74

    CAS  Google Scholar 

  • Chae HZ, Chung SJ, Rhee SG (1994a) Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 269: 27670–27678

    PubMed  CAS  Google Scholar 

  • Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG (1994b) Cloning and sequencing of thio-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thio-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci USA 91: 7017–7021

    Article  PubMed  CAS  Google Scholar 

  • Chae HZ, Kang SW, Rhee SG (1999) Isoforms of mammalian peroxiredoxin that reduce peroxides in presence of thioredoxin. Methods Enzymol 300: 219–226

    Article  PubMed  CAS  Google Scholar 

  • Chen QM, Tu VC, Wu Y, Bahl JJ (2000) Hydrogen peroxide dose dependent induction of cell death or hypertrophy in cardiomyocytes. Arch Biochem Biophys 373: 242–248

    Article  PubMed  CAS  Google Scholar 

  • de la Monte SM (1999) Molecular abnormalities of the brain in Down syndrome: relevance to Alzheimer’s neurodegeneration. J Neural Transm [Suppl] 57: 1–19

    Google Scholar 

  • Fountoulakis M, Langen H (1997) Identification of proteins by matrix-assisted laser desorption ionization-mass spectrometry following in-gel digestion in low-salt, nonvolatile buffer and simplified peptide recovery. Anal Biochem 250: 153–156

    Article  PubMed  CAS  Google Scholar 

  • Fullerton HJ, Ditelberg JS, Chem SF, Sarco DP, Chan PH, Epstein CJ, Ferriero DM (1998) Copper/zinc superoxide dismutase transgenic brain accumulates hydrogen peroxide after perinatal hypoxia ischemia. Ann Neurol 44: 357–364

    Article  PubMed  CAS  Google Scholar 

  • Gerli G, Zenoni L, Locatelli GF, Mongiat R, Piattoni F, Orsini GB, Montagnani A, Gueli MR, Gualandri V (1990) Erythrocyte antioxidant system in Down syndrome. Am J Med Genet [Suppl] 7: 272–273

    CAS  Google Scholar 

  • Greber S, Lubec G, Cairns N, Fountoulakis M (1999) Decreased levels of synaptosomal associated protein 25 in the brain of patients with Down syndrome and Alzheimer’s disease. Electrophoresis 20: 928–934

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge JM (1994) Biological origin of free radicals and mechanisms of antioxidant protection. Chem Biol Interact 91: 133–140

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1999) Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Rad Res 31: 261–272

    Article  CAS  Google Scholar 

  • Hayes JD, McLellan LI (1999) Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Rad Res 31: 273–300

    Article  CAS  Google Scholar 

  • Hoyt KR, Gallagher AJ, Hastings TG, Reynolds IJ (1997) Characterization of hydrogen peroxide toxicity in cultured rat forebrain neurons. Neurochem Res 22: 333–340

    Article  PubMed  CAS  Google Scholar 

  • Ichimiya S, Davis JG, O’Rourke DM, Katsumata M, Greene MI (1997) Murine thioredoxin peroxidase delays neuronal apoptosis and is expressed in areas of the brain most susceptible to hypoxic and ischemic injury. DNA Cell Biol 16: 311–321

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic SV, Clements D, MacLeod K (1998) Biomarkers of oxidative stress are significantly elevated in Down syndrome. Free Radic Biol Med 25: 1044–1048

    Article  PubMed  CAS  Google Scholar 

  • Kang SW, Baines I, Rhee SG (1998a) Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. J Biol Chem 273: 6303–6311

    Article  PubMed  CAS  Google Scholar 

  • Kang SW, Chae HZ, Seo MS, Kim K, Baines IC, Rhee SG (1998b) Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem 273: 6297–6302

    Article  PubMed  CAS  Google Scholar 

  • Kanno S, Ishikawa M, Takayanagi M, Takayanagi Y, Sasaki M (1999) Exposure to hydrogen peroxide induces cell death via apoptosis in primary cultured mouse hepatocytes. Biol Pharm Bull 22: 1296–1300

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Vlkolinsky R, Cairns N, Fountoulakis M, Lubec G (2001) The reduction of NADH: ubiquinone oxidoreductase 24- and 75-kDa subunits in brains of patients with Down syndrome and Alzheimer’s disease. Life Sci 68: 2741–2750

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Vlkolinsky R, Cairns N, Lubec G (2000) Decreased protein levels of complex III core protein 1 and complex V beta chain. Cell Mol Life Sci 57: 1810–1816

    Article  PubMed  CAS  Google Scholar 

  • Kowaltowski AJ, Netto LES, Vercesi AE (1998) The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition. J Biol Chem 273: 12766–12769

    Article  PubMed  CAS  Google Scholar 

  • Langen H, Roder D, Juranville JF, Fountoulakis M (1997) Effect of protein application mode and acrylamide concentration on the resolution of protein spots separated by two-dimensional gel electrophoresis. Electrophoresis 18: 2085–2090

    Article  PubMed  CAS  Google Scholar 

  • Langen H, Berndt P, Roder D, Cairns N, Lubec G, Fountoulakis M (1999) Two-dimensional map of human brain proteins. Electrophoresis 20: 907–916

    Article  PubMed  CAS  Google Scholar 

  • McBride AG, Borutaite V, Brown GC (1999) Superoxide dismutase and hydrogen peroxide cause rapid nitric oxide breakdown, peroxynitrite production and subsequent cell death. Biochim Biophys Acta 1454: 275–288

    Article  PubMed  CAS  Google Scholar 

  • Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD), part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41: 479–486

    Article  PubMed  CAS  Google Scholar 

  • Nagy Zs (1999) Mechanisms of neuronal death in Down’s syndrome. J Neural Transm [Suppl] 57: 233–245

    CAS  Google Scholar 

  • Okado-Matsumoto A, Matsumoto A, Fujii J, Taniguchi N (2000) Peroxiredoxin IV is a secretable protein with heparin-binding properties under reduced conditions. J Biochem 127: 493–501

    Article  PubMed  CAS  Google Scholar 

  • Pappolla MA, Omar RA, Kim KS, Robakis NK (1992) Immunohistochemical evidence of oxidative [corrected] stress in Alzheimer’s disease. Am J Pathol 140: 621–628

    PubMed  CAS  Google Scholar 

  • Percy ME, Dalton AJ, Markovic VD, McLachlan DR, Hummel JT, Rusk AC, Andrews DF (1990) Red cell superoxide dismutase, glutathione peroxidase and catalase in Down syndrome patients with and without manifestations of Alzheimer’s disease. Am J Med Genet 35: 459–467

    Article  PubMed  CAS  Google Scholar 

  • Perrin R, Briancon S, Jeandel C, Artur Y, Minn A, Penin F, Siest G (1990) Blood activity of Cu/Zn superoxide dismutase, glutathione peroxidase and catalase in Alzheimer’s disease: a case-control study. Gerontology 36: 306–313

    Article  PubMed  CAS  Google Scholar 

  • Pierce GB, Parchment RE, Lewellyn AL (1991) Hydrogen peroxide as a mediator of programmed cell death in the blastocyst. Differentiation 46: 181–186

    Article  PubMed  CAS  Google Scholar 

  • Richter-Landsberg C, Vollgraf U (1998) Mode of cell injury and death after hydrogen peroxide exposure in cultured Oligodendroglia cells. Exp Cell Res 244: 218–229

    Article  PubMed  CAS  Google Scholar 

  • Sarafian TA, Rajper N, Grigorian B, Kim A, Shau H (1997) Cellular antioxidant properties of human natural killer enhancing factor B. Free Radic Res 26: 281–289

    Article  PubMed  CAS  Google Scholar 

  • Sarafian TA, Huang C, Kim A, de Velli J, Shau H (1998) Expression of the antioxidant gene NKEF in the central nervous system. Mol Chem Neuropathol 34: 39–51

    Article  PubMed  CAS  Google Scholar 

  • Sarafian TA, Verity MA, Vinters HV, Shih CC, Shi L, Ji XD, Dong L, Shau H (1999) Differential expression of peroxiredoxin subtypes in human brain cell types. J Neurosci Res 56: 206–212

    PubMed  CAS  Google Scholar 

  • Sauri H, Butterfield L, Kim A, Shau H (1995) Antioxidant function of recombinant human natural killer enhancing factor. Biochem Biophys Res Commun 208: 964–969

    Article  PubMed  CAS  Google Scholar 

  • Sawa A (1999) Neuronal cell death in Down’s syndrome. J Neural Transm [Suppl] 57: 87–97

    CAS  Google Scholar 

  • Shau H, Kim A (1994) Identification of natural killer enhancing factor as a major antioxidant in human red blood cells. Biochem Biophys Res Commun 199: 83–88

    Article  PubMed  CAS  Google Scholar 

  • Shau H, Gupta RK, Golub SH (1993) Identification of a natural killer enhancing factor (NKEF) from human erythroid cells. Cell Immunol 147: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Shau H, Kim AT, Hedrick CC, Lusis AJ, Tompkins C, Finney R, Leung DW, Paglia DE (1997) Endogenous natural killer enhancing factor-B increases cellular resistance to oxidative stresses. Free Radic Biol Med 22: 497–507

    Article  PubMed  CAS  Google Scholar 

  • Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36: 83–106

    Article  PubMed  CAS  Google Scholar 

  • Tierney MC, Fisher RH, Lewis AJ, Zorzitto ML, Snow WG, Reid DW, Nieuwstraten P (1988) The NINCDS-ADRDA Work Group criteria for the clinical diagnosis of probable Alzheimer’s disease: a clinicopathologic study of 57 cases. Neurology 38: 359–364

    Article  PubMed  CAS  Google Scholar 

  • Tsuji K, Copeland NG, Jenkins NA, Obinata N (1995) Mammalian antioxidant protein complements alkylhydroperoxide reductase (ahpC) mutation in Escherichia coli. Biochem J 307: 377–381

    PubMed  CAS  Google Scholar 

  • Vollgraf U, Wegner M, Richter-Landsberg C (1999) Activation of AP-1 and nuclear factor-kappaB transcription factors is involved in hydrogen peroxide-induced apoptotic cell death of oligodendrocytes. J Neurochem 73: 2501–2509-

    Article  PubMed  CAS  Google Scholar 

  • Watabe S, Kohno H, Kouyama H, Hiroi T, Yago N, Nakazawa T (1994) Purification and characterization of a substrate protein for mitochondrial ATP-dependent protease in bovine adrenal cortex. J Biochem (Tokyo) 115: 648–654

    CAS  Google Scholar 

  • Watabe S, Hasegawa H, Takimoto K, Yamamoto Y, Takahashi SY (1995) Possible function of SP-22, a substrate of mitochondrial ATP dependent protease, as a radical scavenger. Biochem Biophys Res Commun 213: 1010–1016

    Article  PubMed  CAS  Google Scholar 

  • Watabe S, Hiroi T, Yamamoto Y, Fujioka K, Hasegawa H, Yago N, Takahashi SY (1997) SP-22 is a thioredoxin-dependent peroxide reductase in mitochondria. Eur J Biochem 249: 52–60

    Article  PubMed  CAS  Google Scholar 

  • Whittemore ER, Loo DT, Cotman CW (1994) Exposure to hydrogen peroxide induces cell death via apoptosis in cultured rat cortical neurons. Neuroreport 5: 1485–1488

    Article  PubMed  CAS  Google Scholar 

  • Whittemore ER, Loo DT, Watt JA, Cotman CW (1995) A detailed analysis of hydrogen peroxide-induced cell death in primary neuronal culture. Neuroscience 67: 921–932

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Matsui Y, Natori S, Obinata M (1989) Cloning of a housekeeping-type gene (MER5) preferentially expressed in murine erythroleukemia cells. Gene 80: 337–343

    Article  PubMed  CAS  Google Scholar 

  • Zang P, Liu B, Kang SW, Seo MS, Rhee SG, Obeid LM (1997) Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J Biol Chem 272: 30615–30618

    Article  Google Scholar 

  • Zhou Y, Kok KH, Chun AC, Wong CM, Wu HW, Lin MC, Fung PC, Kung H, Jin DY (2000) Mouse peroxiredoxin V is a thioredoxin peroxidase that inhibits p53-induced apoptosis. Biochem Biophys Res Commun 268: 921–927

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag/Wien

About this chapter

Cite this chapter

Kim, S.H., Fountoulakis, M., Cairns, N., Lubec, G. (2001). Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer’s disease and Down Syndrome. In: Lubec, G. (eds) Protein Expression in Down Syndrome Brain. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6262-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6262-0_18

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83704-7

  • Online ISBN: 978-3-7091-6262-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics