Skip to main content

AAV Vectors, the Future Workhorse of Human Gene Therapy

  • Conference paper
Human Gene Therapy: Current Opportunities and Future Trends

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 43))

Abstract

Adeno-associated virus type 2 (AAV2) is a human parvovirus with a single-stranded DNA genome of approximately 4.68 kb. AAV2 is dependent on co-infection with a helper virus, such as adenovirus or herpes virus, to facilitate its replication. The genome of AAV consists of the rep and cap open reading frames (ORFs) flanked by inverted terminal repeats (ITRs). The replication (rep) gene encodes four overlapping proteins, Rep78, Rep68, Rep52, and Rep40. The two larger proteins, Rep78 and Rep 68, are transcribed from promoter p5 and are necessary for viral DNA replication. Rep52 and Rep 40 are transcribed from promoter p19 and function as DNA helicases facilitating the accumulation of single-stranded progeny virus. The capsid (cap) gene encodes three structural proteins, VP1, VP2, and VP3. The ratio of VP1, VP2, and VP3 in the AAV virion is 1:1:10. The ITRs are the only cis-acting elements that are required for AAV replication, packaging, integration, and rescue (Berns 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berns KI (1990) Parvorviridae and their replication. In: Fields BN, Knipe DM (eds) Virology, 2nd edn, vol 2. Raven, New York, pp 1743–1763

    Google Scholar 

  • Chao H, Liu Y, Rabinowitz J, Li C, Samulski RJ, Walsh CE (2000) Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Molecular therapy. J Am Soc Gene Ther 2: 619–623

    Google Scholar 

  • High KA, Kay MA, Manno CS, Ragni MV, Larson PJ, Couto LB, McClelland A, Glader B, Chew AJ, Tai SJ, Herzog RW, Arruda V, Johnson F, Scallan C, Skarsgard E, Flake AW (2000) Evidence for gene transfer and expression of Factor IX in hempophilia B patients treated with an AAV vector. Nat Genet 24: 257–261

    Article  PubMed  Google Scholar 

  • Li J, Samulski RJ, Xiao X (1997) Role for highly regulated rep gene expression in adeno-associated virus vector production. J Virol 71: 5236–5243

    PubMed  CAS  Google Scholar 

  • Monahan P, Samulski R (2000) AAV Vectors: is clinical success on the horizon? Gene Ther 7: 24–30

    Article  PubMed  CAS  Google Scholar 

  • Monahan PE, Tazelaar J, Xiao X, Nichols TC, Bellinger DA, Read MS, Walsh CE, Samulski RJ (1998) Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia. Gene Ther 5: 40–49

    Article  PubMed  CAS  Google Scholar 

  • Monahan P, Samulski RJ (2000) Adeno-associated virus vectors for gene therapy: More pros than cons? Mol Med Today 6: 433–440

    Article  PubMed  CAS  Google Scholar 

  • Muzyczka N (1992) Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Topics Microbiol Immunol 158: 97–129

    Article  CAS  Google Scholar 

  • Pruchnic R, Cao B, Peterson ZQ, Xiao X, Li J, Samulski RJ, Epperty M, Huard J (2000) The use of adeno-associated virus to circumvent the maturation dependent viral transduction of muscle fibers. Human Gene Ther 11: 521–536

    Article  CAS  Google Scholar 

  • Qiao C, Li J, Skold A, Zhang X, Xiao X (2002) Feasibility of generating adeno-associated virus packaging cell lines containing inducible adenovirus helper genes. J Virol 76: 1904–1913

    Article  PubMed  CAS  Google Scholar 

  • Qiao C, Wang B, Zhu X, Li J, Xiao X (2002) A novel gene expression control system and its use in stable, high-titer 293 cell-based adeno-associated virus packaging cell lines. J Virol 76: 13015–13027

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X, Samulski RJ (2002) Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 76: 791–801

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitz JE, Samulski RJ (2000) Building a better vector: the manipulation of AAV virions. Virology. 278: 301–308

    Article  PubMed  CAS  Google Scholar 

  • Samulski RJ (1993) Adeno-associated virus: integration at a specific chromosomal locus. Cuff Opin Genet Dev 3: 74–80

    Article  CAS  Google Scholar 

  • Samulski RJ, Chang L-S, Shenk T (1989) Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol 63: 3822–3828

    PubMed  CAS  Google Scholar 

  • Summerford C, Samulski R (1998) Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associted virus type 2 virions. J Virol 72: 1438–1445

    PubMed  CAS  Google Scholar 

  • Xiao W, Chirmule N, Berta SC, McCullough B, Gao G, Wilson JM (1999) Gene therapy vectors based on adeno-associated virus type 1. J Virol 73: 3994–4003

    PubMed  CAS  Google Scholar 

  • Xiao X., J. Li, and R. J. Samulski. 1996. Efficient long term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J. Virol. 70: 8098–8108.

    PubMed  CAS  Google Scholar 

  • Xiao X, Li J, Samulski RJ (1998) Production of high titer recombinant adenoassociated virus vectors in the absence of helper adenovirus. J Virol 72: 2224–2232

    PubMed  CAS  Google Scholar 

  • Zabner J, Seiler M, Walters R, Kotin RM, Fulgeras W, Davidson BL, Chiorini JA (2000) Adeno-associated virus Type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilities gene transfer. J Virol 74: 3852–3858

    Article  PubMed  CAS  Google Scholar 

  • Zolotukhin S, Byrne B, Mason E, Zolotukhin I, Potter M, Chesnut K, Summerford C, Samulski R, Muzyczka N (1999) Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gen Ther 6: 973–985

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Samulski, R.J. (2003). AAV Vectors, the Future Workhorse of Human Gene Therapy. In: Rubanyi, G.M., Ylä-Herttuala, S. (eds) Human Gene Therapy: Current Opportunities and Future Trends. Ernst Schering Research Foundation Workshop, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05352-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05352-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05354-6

  • Online ISBN: 978-3-662-05352-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics