Skip to main content

Evolving Gaits for Physical Robots with the HyperNEAT Generative Encoding: The Benefits of Simulation

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7835))

Included in the following conference series:

Abstract

Creating gaits for physical robots is a longstanding and open challenge. Recently, the HyperNEAT generative encoding was shown to automatically discover a variety of gait regularities, producing fast, coordinated gaits, but only for simulated robots. A follow-up study found that HyperNEAT did not produce impressive gaits when they were evolved directly on a physical robot. A simpler encoding hand-tuned to produce regular gaits was tried on the same robot, and outperformed HyperNEAT, but these gaits were first evolved in simulation before being transferred to the robot. In this paper, we tested the hypothesis that the beneficial properties of HyperNEAT would outperform the simpler encoding if HyperNEAT gaits are first evolved in simulation before being transferred to reality. That hypothesis was confirmed, resulting in the fastest gaits yet observed for this robot, including those produced by nine different algorithms from three previous papers describing gaitgenerating techniques for this robot. This result is important because it confirms that the early promise shown by generative encodings, specifically HyperNEAT, are not limited to simulation, but work on challenging real-world engineering challenges such as evolving gaits for real robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beer, R., Gallagher, J.: Evolving dynamical neural networks for adaptive behavior. Adaptive Behavior 1(1), 91–122 (1992)

    Article  Google Scholar 

  2. Bongard, J.C.: Synthesizing Physically-Realistic Environmental Models from Robot Exploration. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 806–815. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Carroll, S.: Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom. Norton, New York (2005)

    Google Scholar 

  4. Clune, J., Beckmann, B., Ofria, C., Pennock, R.: Evolving coordinated quadruped gaits with the HyperNEAT generative encoding. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 2764–2771 (2009)

    Google Scholar 

  5. Clune, J., Lipson, H.: Evolving three-dimensional objects with a generative encoding inspired by developmental biology. In: Proceedings of the European Conference on Artificial Life, pp. 144–148 (2011)

    Google Scholar 

  6. Clune, J., Ofria, C., Pennock, R.: The sensitivity of HyperNEAT to different geoemtric representations of a problem. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 2764–2771 (2009)

    Google Scholar 

  7. Clune, J., Stanley, K.O., Pennock, R., Ofria, C.: On the performance of indirect encoding across the contiuum of regularity. IEEE Transactions on Evolutioanry Computation 15, 346–367 (2011)

    Article  Google Scholar 

  8. Gauci, J., Stanley, K.: Generating large-scale neural networks through discovering geometric regularities. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 997–1004. ACM (2007)

    Google Scholar 

  9. Glette, K., Klaus, G., Zagal, J., Torresen, J.: Evolution of locomotion in a simulated quadruped robot and transferral to reality. In: Proceedings of the Seventeenth International Symposium on Artificial Life and Robotics (2012)

    Google Scholar 

  10. Hornby, G., Lipson, H., Pollack, J.B.: Generative representations for the automated design of modular physical robots. IEEE Transactions on Robotics and Automation 19, 703–719 (2003)

    Article  Google Scholar 

  11. Hornby, G., Takamura, S., Tamamoto, T., Fujita, M.: Autonomous evolution of dynamic gaits with two quadruped robots. IEEE Transactions on Robotics 21(3), 402–410 (2005)

    Article  Google Scholar 

  12. Kohl, N., Stone, P.: Machine learning for fast quadrupedal motion. In: The Nineteenth National Conference on Articifial Intelligence (AAAI), pp. 611–616 (2004)

    Google Scholar 

  13. Koos, S., Mouret, J., Doncieux, S.: The transferability approach: Crossing the reality gap in evolutionary robotics. IEEE Trans. Evolutionary Computation 1, 1–25 (2012)

    Google Scholar 

  14. Lohmann, S., Yosinksi, J., Gold, E., Clune, J., Blum, J., Lipson, H.: Aracna: An open-source quadruped platform for evolutionary robotics. In: Proceedings of the 13th International Conference on the Synthesis and Simulation of Living Systems, pp. 387–392 (2012)

    Google Scholar 

  15. Raibert, M., Chepponis, M., Brown Jr., H.: Running on four legs as though they were one. IEEE Journal of Robotics and Automation 2(2), 70–82 (1986)

    Google Scholar 

  16. Ridderstrom, C.: Legged locomotion control–a literature survey. In: Tech Report: Royal Institute of Technology. pp. 1400–1179. No. TRITA-MMK, Stockholm, Sweden (1999)

    Google Scholar 

  17. Secretan, J., Beato, N., D’Ambrosio, D., Rodriguez, A., Campbell, A., Folsom-Kovarik, J., Stanley, K.: Picbreeder: A Case Study in Collaborative Evolutionary Exploration of Design Space. Evolutionary Computation 19(3), 373–403 (2011)

    Article  Google Scholar 

  18. Shen, H., Yosinski, J., Kormushev, P., Caldwell, D.G., Lipson, H.: Learning fast quadruped robot gaits with the RL power spline parameterization. In: AIMSA Workshop on Advances in Robot Learning and Human-Robot Interaction (2012)

    Google Scholar 

  19. Stanley, K.O.: Compositional pattern producing networks: A novel abstraction of development. Genetic Programming and Evolvable Matter 8(2), 131–152 (2007)

    Article  MathSciNet  Google Scholar 

  20. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artificial Life 15(2), 185–212 (2009)

    Article  Google Scholar 

  21. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evolutionary Computation 10(2), 99–127 (2002)

    Article  Google Scholar 

  22. Téllez, R.A., Angulo, C., Pardo, D.E.: Evolving the Walking Behaviour of a 12 DOF Quadruped Using a Distributed Neural Architecture. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds.) BioADIT 2006. LNCS, vol. 3853, pp. 5–19. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Valsalam, V., Miikkulainen, R.: Modular neuroevolution for multilegged locomotion. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 265–272 (2008)

    Google Scholar 

  24. Wettergreen, D., Thorpe, C.: Gait generation for legged robots. In: IEEE International Conference on Intelligent Robots and Systems, pp. 1413–1420 (1992)

    Google Scholar 

  25. Yosinski, J., Clune, J., Hidalgo, D., Nguyen, S., Zagal, J., Lipson, H.: Evolving robot gaits in hardware: the HyperNEAT generative encoding vs. parameter optimization. In: Proceedings of the 20th European Conference on Artificial Life, pp. 11–18 (2011)

    Google Scholar 

  26. Zagal, J., Ruiz-del-Solar, J., Vallejos, P.: Back to reality: Crossing the reality gap in evolutionary robotics. In: Proceedings of IAV 2004, the 5th IFAC Symposium on Intelligent Autonomous Vehicles (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, S., Yosinski, J., Glette, K., Lipson, H., Clune, J. (2013). Evolving Gaits for Physical Robots with the HyperNEAT Generative Encoding: The Benefits of Simulation. In: Esparcia-Alcázar, A.I. (eds) Applications of Evolutionary Computation. EvoApplications 2013. Lecture Notes in Computer Science, vol 7835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37192-9_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37192-9_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37191-2

  • Online ISBN: 978-3-642-37192-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics