Skip to main content

The Ewald–Oseen Extinction Theorem and the Extended Boundary Condition Method

  • Chapter
  • First Online:

Abstract

Mathematical statements of the Ewald–Oseen extinction theorem have been formulated for a linear homogeneous medium with frequency-domain constitutive relations \(\underline{D} =\underline{\underline{\varepsilon }} \mbox{ $^{\bullet }$ }\underline{E} + [\underline{\underline{\xi }} + \left (\underline{K}-\underline{\varGamma }\right ) \times \underline{\underline{ I}}]\mbox{ $^{\bullet }$ }\underline{H}\) and \(\underline{B} =\underline{\underline{\mu }} \mbox{ $^{\bullet }$ }\underline{H} - [\underline{\underline{\xi }} -\left (\underline{K}+\underline{\varGamma }\right ) \times \underline{\underline{ I}}]\mbox{ $^{\bullet }$ }\underline{E}\). During the formulation, four dyadic Green functions were set up and their characteristics elucidated. The Ewald–Oseen extinction theorem has been exploited to set up the conceptual framework of the extended boundary condition method (EBCM) for scattering by a three-dimensional object made of a homogeneous medium. Implementation of the EBCM is also premised on the availability of bilinear expansions of the dyadic Green functions for both the scattering medium and the medium surrounding the scatterer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Lakhtakia, Radio-frequency absorption of near-field energy by prolate spheroidal models of humans and animals, MS thesis, University of Utah, Salt Lake City (1981)

    Google Scholar 

  2. A. Lakhtakia, Near-field scattering and absorption by lossy dielectrics at resonance frequencies, PhD thesis, University of Utah, Salt Lake City (1983)

    Google Scholar 

  3. P.C. Waterman, Matrix formulation of electromagnetic scattering. Proc. IEEE 53, 805–812 (1965)

    Article  Google Scholar 

  4. P.C. Waterman, Scattering by dielectric obstacles. Alta Frequenza (Speciale) 38, 348–352 (1969)

    Google Scholar 

  5. P.W. Barber, C. Yeh, Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies. Appl. Opt. 14, 2864–2872 (1975)

    Article  Google Scholar 

  6. R.H.T. Bates, D.J.N. Wall, Null-field approach to scalar diffraction: I. General method. Philos. Trans. R. Soc. Lond. A 287, 45–78 (1977)

    Article  MathSciNet  Google Scholar 

  7. R.H.T. Bates, D.J.N. Wall, Null-field approach to scalar diffraction: II. Approximate methods. Philos. Trans. R. Soc. Lond. A 287, 79–95 (1977)

    Article  MathSciNet  Google Scholar 

  8. R.H.T. Bates, D.J.N. Wall, Null-field approach to scalar diffraction: III. Inverse methods. Philos. Trans. R. Soc. Lond. A 287, 97–114 (1977)

    Article  MathSciNet  Google Scholar 

  9. B. Stupfel, A. Lavie, J.N. Decarpigny, Combined integral equation formulation and null-field method for the exterior acoustic problem. J. Acoust. Soc. Am. 83, 937–941 (1988)

    Article  Google Scholar 

  10. V.V. Varadan, A. Lakhtakia, V.K. Varadan, Comments on recent criticism of the T-matrix method. J. Acoust. Soc. Am. 84, 2280–2284 (1988)

    Article  Google Scholar 

  11. M.I. Mishchenko, G. Videen, V.A. Babenko, N.G. Khlebtsov, T. Wriedt, T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database. J. Quant. Spectrosc. Radiat. Transf. 88, 357–406 (2004)

    Article  Google Scholar 

  12. M.I. Mishchenko, G. Videen, V.A. Babenko, N.G. Khlebtsov, T. Wriedt, Comprehensive T-matrix reference database: a 2004–2006 update. J. Quant. Spectrosc. Radiat. Transf. 106, 304–324 (2007)

    Article  Google Scholar 

  13. M.I. Mishchenko, G. Videen, N.G. Khlebtsov, T. Wriedt, N.T. Zakharova, Comprehensive T-matrix reference database: a 2006–2007 update. J. Quant. Spectrosc. Radiat. Transf. 109, 1447–1460 (2008)

    Article  Google Scholar 

  14. M.I. Mishchenko, N.T. Zakharova, G. Videen, N.G. Khlebtsov, T. Wriedt, Comprehensive T-matrix reference database: a 2007–2009 update. J. Quant. Spectrosc. Radiat. Transf. 111, 650–658 (2010)

    Article  Google Scholar 

  15. N.T. Zakharova, G. Videen, N.G. Khlebtsov, Comprehensive T-matrix reference database: a 2009–2011 update. J. Quant. Spectrosc. Radiat. Transf. 113, 1844–1852 (2012)

    Article  Google Scholar 

  16. M.I. Mishchenko, G. Videen, N.G. Khlebtsov, T. Wriedt, Comprehensive T-matrix reference database: a 2012–2013 update. J. Quant. Spectrosc. Radiat. Transf. 123, 145–152 (2013)

    Article  Google Scholar 

  17. M.I. Mishchenko, N.T. Zakharova, N.G. Khlebtsov, T. Wriedt, G. Videen, Comprehensive T-matrix reference database: a 2013–2014 update. J. Quant. Spectrosc. Radiat. Transf. 146, 349–354 (2014)

    Article  Google Scholar 

  18. M.I. Mishchenko, N.T. Zakharova, N.G. Khlebtsov, G. Videen, T. Wriedt, Comprehensive thematic T-matrix reference database: a 2014–2015 update. J. Quant. Spectrosc. Radiat. Transf. 178, 276–283 (2016)

    Article  Google Scholar 

  19. V.K. Varadan, V.V. Varadan (eds.), Acoustic, Electromagnetic, and Elastic Wave Scattering–Focus on the T-matrix Method (Pergamon Press, New York, 1980)

    Google Scholar 

  20. L.W. Schmerr Jr., Fundamentals of Ultrasonic Nondestructive Evaluation—A Modeling Approach, 2nd edn. (Springer, Cham, Switzerland, 2016)

    Book  Google Scholar 

  21. H.C. Chen, Theory of Electromagnetic Waves: A Coodinate-Free Approach (McGraw-Hill, New York, 1983)

    Google Scholar 

  22. R.F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961)

    Google Scholar 

  23. P.P. Ewald, Zur Begründung der Kristalloptik. Annalen der Physik (4th Series) 49, 117–143 (1916)

    Google Scholar 

  24. C.W. Oseen, Über die Wechselwirkung zwischen zwei elektrischen Dipolen und über die Drehung der Polarisationsebene in Kristallen und Flüssigkeiten. Annalen der Physik (4th Series) 48, 1–56 (1915)

    Google Scholar 

  25. H. Fearn, D.F.V. James, P.W. Milonni, Microscopic approach to reflection, transmission, and the Ewald–Oseen extinction theorem. Am. J. Phys. 64, 986–995 (1996)

    Article  Google Scholar 

  26. A. Lakhtakia, The extended boundary condition method for scattering by a chiral scatterer in a chiral medium. Optik 86, 155–161 (1991)

    Google Scholar 

  27. A. Lakhtakia, On the Huygens’s principles and the Ewald–Oseen extinction theorems for, and the scattering of, Beltrami fields. Optik 91, 35–40 (1992)

    Google Scholar 

  28. M. Faryad, A. Lakhtakia, On the Huygens principle for bianisotropic mediums with symmetric permittivity and permeability dyadics. Phys. Lett. A 381, 742–746 (2017); errata: 381, 2136 (2017)

    Google Scholar 

  29. E.J. Post, Formal Structure of Electromagnetics (Dover Press, New York, 1997)

    MATH  Google Scholar 

  30. T.G. Mackay, A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy: A Field Guide (Word Scientific, Singapore, 2010)

    Google Scholar 

  31. J.A. Kong, Theorems of bianisotropic media. Proc. IEEE 60, 1036–1046 (1972)

    Article  MathSciNet  Google Scholar 

  32. C.M. Krowne, Electromagnetic theorems for complex anisotropic media. IEEE Trans. Antennas Propag. 32, 1224–1230 (1984)

    Article  Google Scholar 

  33. W.S. Weiglhofer, A. Lakhtakia, On electromagnetic waves in biaxial bianisotropic media. Electromagnetics 19, 351–362 (1999)

    Article  Google Scholar 

  34. I.V. Lindell, S.A. Tretyakov, A.J. Viitanen, Plane-wave propagation in a uniaxial chiro-omega medium. Microw. Opt. Technol. Lett. 6, 517–520 (1993)

    Article  Google Scholar 

  35. M.M.I. Saadoun, N. Engheta, A reciprocal phase shifter using novel pseudochiral or Ω medium. Microw. Opt. Technol. Lett. 5, 184–188 (1992)

    Article  Google Scholar 

  36. S.L. Adler, Photon splitting and photon dispersion in a strong magnetic field. Ann. Phys. (N. Y.) 67, 599–647 (1971)

    Article  Google Scholar 

  37. J. Plébanski, Electromagnetic waves in gravitational fields. Phys. Rev. 118, 1396–1408 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Lakhtakia, T.G. Mackay, Dyadic Green function for an electromagnetic medium inspired by general relativity. Chin. Phys. Lett. 23, 832–833 (2006); errata: 29, 019902 (2012)

    Google Scholar 

  39. I. Stakgold, Green’s Functions and Boundary Value Problems, 2nd edn. (Wiley, New York, 1998)

    MATH  Google Scholar 

  40. F.M. Callier, C.A. Desoer, Linear System Theory (Springer, New York, 1990)

    MATH  Google Scholar 

  41. W.S. Weiglhofer, Analytic methods and free-space dyadic Green’s functions. Radio Sci. 28, 847–857 (1993)

    Article  Google Scholar 

  42. F. Olyslager, I.V. Lindell, Electromagnetics and exotic media: a quest for the holy grail. IEEE Antennas Propag. Mag. 44(2), 48–58 (2002)

    Article  Google Scholar 

  43. A. Lakhtakia, T.G. Mackay, Vector spherical wavefunctions for orthorhombic dielectric-magnetic material with gyrotropic-like magnetoelectric properties. J. Opt. (India) 41, 201–213 (2012)

    Article  Google Scholar 

  44. N.R. Ogg, A Huygen’s principle for anisotropic media. J. Phys. A: Gen. Phys. 4, 382–388 (1971)

    Article  Google Scholar 

  45. A. Lakhtakia, W.S. Weiglhofer, On electromagnetic fields in a linear medium with gyrotropic-like magnetoelectric properties. Microw. Opt. Technol. Lett. 15, 168–170 (1997)

    Article  Google Scholar 

  46. T.G. Mackay, A. Lakhtakia, The Huygens principle for a uniaxial dielectric-magnetic medium with gyrotropic-like magnetoelectric properties. Electromagnetics 29, 143–150 (2009)

    Article  Google Scholar 

  47. E.J. Rothwell, M.J. Cloud, Electromagnetics (CRC Press, Boca Raton, FL, 2001)

    Book  Google Scholar 

  48. A. Lakhtakia, V.K. Varadan, V.V. Varadan, Scattering and absorption characteristics of lossy dielectric, chiral, nonspherical objects. Appl. Opt. 24, 4146–4154 (1985)

    Article  Google Scholar 

  49. P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953)

    MATH  Google Scholar 

  50. M.F. Iskander, A. Lakhtakia, C.H. Durney, A new procedure for improving the solution stability and extending the frequency range of the EBCM. IEEE Trans. Antennas Propag. 31, 317–324 (1983); see also: 32, 209–210 (1984)

    Google Scholar 

  51. L. Lewin, On the restricted validity of point-matching techniques. IEEE Trans. Microw. Theory Tech. 18, 1041–1047 (1970)

    Article  Google Scholar 

  52. S. Lefschetz, Differential Equations: Geometric Theory (Wiley, New York, 1963)

    MATH  Google Scholar 

  53. P.C. Waterman, Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D 3, 825–839 (1971)

    Article  Google Scholar 

  54. P.C. Waterman, New formulation of acoustic scattering. J. Acoust. Soc. Am. 45, 1417–1429 (1969)

    Article  MATH  Google Scholar 

  55. M.F. Werby, L.H. Green, An extended unitary approach for acoustical scattering from elastic shells immersed in a fluid. J. Acoust. Soc. Am. 74, 625–630 (1983)

    Article  MATH  Google Scholar 

  56. A. Lakhtakia, V.K. Varadan, V.V. Varadan, Scattering by highly aspherical targets: EBCM coupled with reinforced orthogonalizations. Appl. Opt. 23, 3502–3504 (1984)

    Article  Google Scholar 

  57. M.F. Iskander, A. Lakhtakia, C.H. Durney, A new iterative procedure to solve for scattering and absorption by dielectric objects. Proc. IEEE 71, 1361–1362 (1982)

    Article  Google Scholar 

  58. A. Lakhtakia, M.F. Iskander, C.H. Durney, An iterative extended boundary condition method for solving the absorption characteristics of lossy dielectric objects of large aspect ratios. IEEE Trans. Microw. Theory Tech. 31, 640–647 (1983)

    Article  Google Scholar 

  59. A. Lakhtakia, M.F. Iskander, Theoretical and experimental evaluation of power absorption in elongated biological objects at and beyond resonance. IEEE Trans. Electromagn. Compat. 25, 448–453 (1983)

    Article  Google Scholar 

  60. M.F. Iskander, A. Lakhtakia, Extension of iterative EBCM to calculate scattering by low-loss or lossless elongated dielectric objects. Appl. Opt. 23, 948–953 (1984)

    Article  Google Scholar 

  61. A. Lakhtakia, N. Sitaram, V.K. Varadan, V.V. Varadan, Post-resonance scattering by lossy dielectric biological targets: point dipole sources. Innov. Technol. Biol. Med. 5, 417–424 (1984)

    Google Scholar 

  62. A. Lakhtakia, V.K. Varadan, V.V. Varadan, Scattering by lossy dielectric slender objects with nonvanishing magnetic susceptibility. J. Appl. Phys. 56, 3057–3060 (1984)

    Article  Google Scholar 

  63. A. Lakhtakia, V.K. Varadan, V.V. Varadan, Iterative extended boundary condition method for scattering by objects of high aspect ratios. J. Acoust. Soc. Am. 76, 906–912 (1984)

    Article  MATH  Google Scholar 

  64. M.F. Iskander, P.W. Barber, C.H. Durney, H. Massoudi, Irradiation of prolate spheroidal models of humans in the near field of a short electric dipole. IEEE Trans. Microw. Theory Tech. 28, 801–807 (1980)

    Article  Google Scholar 

  65. A. Lakhtakia, M.F. Iskander, C.H. Durney, H. Massoudi, Irradiation of prolate spheroidal models of humans and animals in the near field of a small loop antenna. Radio Sci. 17, 77S–84S (1982)

    Article  Google Scholar 

  66. A. Lakhtakia, M.F. Iskander, C.H. Durney, H. Massoudi, Near–field absorption characteristics of prolate spheroidal models exposed to a small loop antenna of arbitrary orientation. IEEE Trans. Microw. Theory Tech. 29, 588–594 (1981)

    Article  Google Scholar 

  67. A. Lakhtakia, M.F. Iskander, C.H. Durney, H. Massoudi, Absorption characteristics of prolate spheroidal models exposed to the near fields of electrically small apertures. IEEE Trans. Biomed. Eng. 29, 569–576 (1982)

    Article  Google Scholar 

  68. R.H.T. Bates, Rayleigh hypothesis, the extended-boundary condition and point matching. Electron. Lett. 5, 654–655 (1969)

    Article  MathSciNet  Google Scholar 

  69. W.C. Gibson, The Method of Moments in Electromagnetics, 2nd edn. (CRC Press, Boca Raton, FL, 2015)

    MATH  Google Scholar 

  70. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Norwood, MA, 2005)

    MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to the Charles Godfrey Binder Endowment at Penn State for ongoing support of my research activities. I thank Drs. Cynthia M. Furse (University of Utah), Tom G. Mackay (University of Edinburgh), and Muhammad Faryad (Lahore University of Management Sciences) for going through the pre-final version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlesh Lakhtakia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Lakhtakia, A. (2018). The Ewald–Oseen Extinction Theorem and the Extended Boundary Condition Method. In: Lakhtakia, A., Furse, C. (eds) The World of Applied Electromagnetics. Springer, Cham. https://doi.org/10.1007/978-3-319-58403-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58403-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58402-7

  • Online ISBN: 978-3-319-58403-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics