Skip to main content

Cenozoic Era

  • Living reference work entry
  • First Online:
Encyclopedia of Animal Cognition and Behavior
  • 51 Accesses

Synonyms

Age of Mammals; Cainozoic Era; Kainozoic Era

Definition

The most recent era of the earth’s history, which began 65.5 million years ago (mya), is known as the “Cenozoic Era.” This is that time frame in which the geological changes gave rise to the world map’s current face, and the biological changes enriched it with today’s flora and fauna. Despite representing only 1.4% of the earth’s history, comprehensive knowledge is available pertaining to this era.

Introduction

Cenozoic, spelled initially as Kaniozoic, means “recent life” as newer forms of life, similar to the present-day biota appeared during this era. Cenozoic derives its name from two Greek words kainós, meaning “new,” and zoic, meaning “animal life” (Harland et al. 1990). British geologist John Phillips coined the term in the year 1840.

Anthropologically, Cenozoic is significant because the entire primate evolution and the subsequent human evolution occurred during this era. Besides primates, other mammals, birds,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bijl, P., Bendle, J., Bohaty, S., Pross, J., Schouten, S., Tauxe, L., Stickley, C., Mckay, R., Röhl, U., Olney, M., Sluijs, A., Escutia, C., & Brinkhuis, H. (2013). Eocene cooling linked to early flow across the Tasmanian Gateway. Proceedings of the National Academy of Sciences of the United States of America, 110, 9645–9650. https://doi.org/10.1073/pnas.1220872110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brusatte, S. L., Butler, R. J., Barrett, P. M., Carrano, M. T., Evans, D. C., Lloyd, G. T., Mannion, P. D., Norell, M. A., Peppe, D. J., Upchurch, P., & Williamson, T. E. (2015). The extinction of the dinosaurs. Biological Reviews, 90, 628–642. https://doi.org/10.1111/brv.12128.

    Article  PubMed  Google Scholar 

  • Burke, K. D., Williams, J. W., Chandler, M. A., Haywood, A. M., Lunt, D. J., & Otto-Bliesner, B. L. (2018). Pliocene and Eocene provide best analogs for near-future climates. Proceedings of the National Academy of Sciences of the United States of America, 115, 13288–13293. https://doi.org/10.1073/pnas.180960011.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiarenza, A. A., Farnsworth, A., Mannion, P. D., Lunt, D. J., Valdes, P. J., Morgan, J. V., & Allison, P. A. (2020). Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction. Proceedings of the National Academy of Sciences of the United States of America, 117, 17084–17093. https://doi.org/10.1073/pnas.2006087117.

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa, E., Garcés, M., Sáez, A., Cabrera, L., & López-Blanco, M. (2011). The age of the “Grande Coupure” mammal turnover: New constraints from the Eocene–Oligocene record of the Eastern Ebro Basin (NE Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 301(1–4), 97–107. https://doi.org/10.1016/j.palaeo.2011.01.005.

    Article  Google Scholar 

  • Daniel, J. F., Bercovici, A., Berv, J. S., Dunn, R., Fastovsky, D. E., Lyson, T. R., Vajda, V., & Gauthier, J. A. (2018). Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction. Current Biology, 28, 1825–1831. https://doi.org/10.1016/j.cub.2018.04.062.

    Article  Google Scholar 

  • Gutjahr, M., Ridgwell, A., Sexton, P. F., Anagnostou, E., Pearson, P. N., Pälike, H., Norris, R. D., Thomas, E., & Foster, G. L. (2017). Very large release of mostly volcanic carbon during the Palaeocene-Eocene Thermal Maximum. Nature, 548(7669), 573–577. https://doi.org/10.1038/nature23646.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, D. G., & Smith, A. G. (1990). The Chronostratic scale. In A geologic time scale 1989 (p. 31). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Haywood, A. M., Dowsett, H. J., Valdes, P. J., Lunt, D., Francis, J. E., & Sellwood, B. (2008). Introduction. Pliocene climate, processes and problems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367, 3–17. https://doi.org/10.1098/rsta.2008.0205.

    Article  Google Scholar 

  • Holbourn, A. E., Kuhnt, W., Clemens, S. C., Kochhann, K. G., Jöhnck, J., Lübbers, J., & Andersen, N. (2018). Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nature Communications, 9, 1584. https://doi.org/10.1038/s41467-018-03950-1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutchinson, D., Coxall, H. K., Lunt, D., Steinthorsdottir, M., Boer, A. M., Baatsen, M., Heydt, A. V., et al. (2020). The Eocene-Oligocene transition: A review of marine and terrestrial proxy data, models and model-data comparisons. Climate of the Past Discussions, 1–71. https://doi.org/10.5194/cp-2020-68.

  • Keller, G., Bhowmick, P. K., Upadhyay, H., Dave, A., Reddy, A. N., Jaiprakash, B. C., & Adatte, T. (2011). Deccan volcanism linked to the Cretaceous-Tertiary boundary mass extinction: New evidence from ONGC wells in the Krishna-Godavari Basin. Journal of the Geological Society of India, 78, 399–428. https://doi.org/10.1007/s12594-011-0107-3.

    Article  Google Scholar 

  • Keller, G., Mateo, P., Punekar, J., Khozyem, H., Gertsch, B., Spangenberg, J., Bitchong, A. M., & Adatte, T. (2018). Environmental changes during the Cretaceous-Paleogene mass extinction and Paleocene-Eocene Thermal Maximum: Implications for the Anthropocene. Gondwana Research, 56, 69–89. https://doi.org/10.1016/j.gr.2017.12.002.

    Article  Google Scholar 

  • Krijgsman, W., Hilgen, F., Raffi, I., Sierro, F. J., & Wilsonk, D. S. (1999). Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, 652–655. https://doi.org/10.1038/23231.

    Article  Google Scholar 

  • Lindow, B. E. K., & Dyke, G. J. (2006). Bird evolution in the Eocene: Climate change in Europe and a Danish fossil fauna. Biological Reviews, 81, 1–16. https://doi.org/10.1017/S146479310600707X.

    Article  Google Scholar 

  • Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., & Bohaty, S. (2005). Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science, 309, 600–603. https://doi.org/10.1126/science.1110063.

    Article  PubMed  Google Scholar 

  • Pimiento, C., Griffin, J. N., Clements, C. F., Silvestro, D., Varela, S., Uhen, M. D., & Jaramillo, C. (2017). The Pliocene marine megafauna extinction and its impact on functional diversity. Nature Ecology & Evolution, 1(8), 1100–1106. https://doi.org/10.1038/s41559-017-0223-6.

    Article  Google Scholar 

  • Speijer, R., Scheibner, C., Stassen, P., & Morsi, A. M. (2012). Response of marine ecosystems to deep-time global warming: A synthesis of biotic patterns across the Paleocene-Eocene thermal maximum (PETM). Austrian Journal of Earth Sciences, 105, 6–16.

    Google Scholar 

  • Stanley, G. D., Jr. (2001). Introduction to reef ecosystems and their evolution. In G. D. Stanley Jr. (Ed.), The history and sedimentology of ancient reef systems (pp. 1–39). New York: Kluwer/Plenum Publishers.

    Chapter  Google Scholar 

  • Walker, M., Head, M. J., Lowe, J., Berkelhammer, M., BjÖrck, S., Cheng, H., Cwynar, L. C., et al. (2019). Subdividing the Holocene Series/Epoch: Formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes. Journal of Quaternary Science, 34, 173–186. https://doi.org/10.1002/jqs.3097.

    Article  Google Scholar 

  • Willeit, M., Ganopolski, A., Calov, R., & Brovkin, V. (2019). Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Science Advances, 5(4), eaav7. https://doi.org/10.1126/sciadv.aav7337.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akash Gautam .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

David, A., Gautam, A. (2021). Cenozoic Era. In: Vonk, J., Shackelford, T. (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-47829-6_1954-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47829-6_1954-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47829-6

  • Online ISBN: 978-3-319-47829-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics