Skip to main content

Computational Problems Connected with Jiles-Atherton Model of Magnetic Hysteresis

  • Conference paper
Recent Advances in Automation, Robotics and Measuring Techniques

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 267))

Abstract

Paper presents the most important problems connected with Jiles-Atherton model of magnetic B(H) hysteresis. These problems are mainly caused by accuracy of numerical integration as well as methods of solving the ordinary differential equations. Paper presents comparison of accuracy of calculation with MATLAB and OCTAVE for both Windows 7 and Scientific Linux 6.3. Moreover, the analyse of time efficiency is presented. On the base of numerical errors analyses and benchmarking, the guidelines for calculation of Jiles-Atherton model are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jiles, D.C., Atherton, D.: Theory of ferromagnetic hysteresis. Journal of Applied Physics 55, 2115 (1984)

    Article  Google Scholar 

  2. Jiles, D.C., Atherton, D.: Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials 61, 48 (1986)

    Article  Google Scholar 

  3. Venkataraman, R., Krishnaprasad, P.: Qualitative analysis of a bulk ferromagnetic hysteresis model. In: Proceedings of the 37th IEEE Conference on Decision and Control, p. 2443 (1998)

    Google Scholar 

  4. Szewczyk, R.: Modelling of the magnetic and magnetostrictive properties of high permeability Mn-Zn ferrites. PRAMANA-Journal of Physics 67, 1165–1171 (2006)

    Article  Google Scholar 

  5. Chwastek, K., Szczyglowski, J.: Estimation methods for the Jiles-Atherton model parameters – a review. Electrical Review (Przeglad Elektrotechniczny) 84, 145 (2008)

    Google Scholar 

  6. Pop, N., Caltun, O.: Jiles-Atherton model used in the magnetization process study for the composite magnetoelectric materials based on cobalt ferrite and barium titanate. Canadian Journal of Physics 89, 787 (2011)

    Article  Google Scholar 

  7. Baghel, A., Kulkarni, S.: Hysteresis modeling of the grain-oriented laminations with inclusion of crystalline and textured structure in a modified Jiles-Atherton model. Journal of Applied Physics 113, 043908 (2013)

    Google Scholar 

  8. Stoklosa, Z., Rasek, J., Kwapulinski, P.: Magnetic, electrical and plastic properties of Fe76Nb2Si13B9, Fe75Ag1Nb2Si13B9 and Fe75Cu1Nb2Si13B9 amorphous alloys. Journal of Alloys and Compounds 509, 9050 (2011)

    Article  Google Scholar 

  9. Bienkowski, A., Szewczyk, R., Kolano, R.: Influence of thermal treatment on magnetoelastic Villari effect in Fe78Si13B9 amorphous alloy. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 375, 1024–1026 (2004)

    Article  Google Scholar 

  10. Hamimid, M., Mimoune, S., Feliachi, M.: Evaluation of minor hysteresis loops using Langevin transforms in modified inverse Jiles-Atherton model. Physica B-Condensed Matter 429, 115 (2013)

    Article  Google Scholar 

  11. Jackiewicz, D., Szewczyk, R., Salach, J.: Modelowanie charakterystyk magnesowania stali konstrukcyjnych. Pomiary Automatyka Robotyka 2, 552 (2012)

    Google Scholar 

  12. Andrei, P., Dimian, M.: Clockwise Jiles-Atherton Hysteresis Model. IEEE Transactions on Magnetics 49, 3183 (2013)

    Article  Google Scholar 

  13. Pop, N.C., Caltun, O.F.: Using the Jiles Atherton model to analyze the magnetic properties of magnetoelectric materials (BaTiO3)(x) (CoFe2O4)(1-x). Indian Journal of Physics 86, 283–289 (2012)

    Article  Google Scholar 

  14. Gorecki, K., Detka, K.: Electrothermal model of choking-coils for the analysis of dc-dc converters. Materials Science and Engineering B-Advanced Functional Solid-State Materials 177, 1248 (2012)

    Article  Google Scholar 

  15. Raghunathan, A., Klimczyk, P., Melikhov, Y.: Application of Jiles-Atherton Model to Stress Induced Magnetic Two-Phase Hysteresis. IEEE Transactions on Magnetics 49, 3187 (2013)

    Article  Google Scholar 

  16. Jiles, D.C.: Introduction to Magnetism and Magnetic Materials. Chapman and Hall, London (1998)

    Google Scholar 

  17. Ramesh, A., Jiles, D.C., Bi, Y.: Generalization of hysteresis modeling to anisotropic materials. Journal of Applied Physics 81, 5585 (1997)

    Article  Google Scholar 

  18. Ramesh, A., Jiles, D., Roderik, J.: A model of anisotropic anhysteretic magnetization. IEEE Transactions on Magnetics 32, 4234 (1996)

    Article  Google Scholar 

  19. Chwastek, K., Szczygłowski, J.: Identification of a hysteresis model parameters with genetic algorithms. Mathematics and Computers in Simulation 71, 206 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Davidson, R., Charap, S.: Combined vector hysteresis models and applications. IEEE Transactions on Magnetics 32, 4198 (1996)

    Article  Google Scholar 

  21. Tellini, B., Giannetti, R., Lizon-Martinez, S., Marracci, M.: Characterization of the Accommodation Effect in Soft Hysteretic Materials via Sensorless Measurement Technique. IEEE Transactions on Instrumentation and Measurement 58, 2807 (2009)

    Article  Google Scholar 

  22. Della Torre, E.: A Preisach model for accommodation. IEEE Transactions on Magnetics 30, 2701 (1994)

    Article  Google Scholar 

  23. Shampine, L.F.: Vectorized Adaptive Quadrature in MATLAB. Journal of Computational and Applied Mathematics 211, 131 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Calkins, F., Smith, R., Flatau, A.: Energy-based hysteresis model for magnetostrictive transducers. IEEE Transactions on Magnetics 36, 429 (2000)

    Article  Google Scholar 

  25. Szewczyk, R.: Modelling of the magnetic and magnetostrictive properties of high permeability Mn-Zn ferrites. J. of Physics 67(6), 1165–1171 (2006)

    Google Scholar 

  26. Szewczyk, R., Bienkowski, A.: Magnetoelastic Villari effect in high-permeability Mn-Zn ferrites and modeling of this effect. In: Conference: 15th International Symposium on Soft Magnetic Materials (2001); J. of Magnetism and Magnetic Materials 254, SI 284– SI 286 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Szewczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Szewczyk, R. (2014). Computational Problems Connected with Jiles-Atherton Model of Magnetic Hysteresis. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Recent Advances in Automation, Robotics and Measuring Techniques. Advances in Intelligent Systems and Computing, vol 267. Springer, Cham. https://doi.org/10.1007/978-3-319-05353-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05353-0_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05352-3

  • Online ISBN: 978-3-319-05353-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics