Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Despite its epithet as the ‘Blue Planet’ only about 1% of the water on Earth is liquid freshwater (containing <0.5 g l−1 dissolved salts) and thereby directly useable by humans [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Durand P, Breuer L, Johnes PJ, Billen G, Butturini A, Pinay G, van Grinsven H, Garnier J, Rivett M, Reay DS, Curtis C, Siemens J, Maberly S, Kaste Ø, Humborg C, Loeb R, de Klein J, Hejzlar J, Skoulikidis N, Kortelainen P, Lepistö A, Wright R (2011) Nitrogen processes in aquatic ecosystems. In: Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti B (eds) The European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press, UK, pp 126–146

    Chapter  Google Scholar 

  2. Vitousek PM, Mooney HA, Lubchenco J, Melilla JM (1997) Human domination of earth’s ecosystems. Science 277:494–499. https://doi.org/10.1126/science.277.5325.494

    Article  CAS  Google Scholar 

  3. Grizzetti B, Bouraoui F, Billen G, van Grinsven H, Cardoso AC, Thieu V, Garnier J, Curtis C, Howarth R, Johnes P (2011) Nitrogen as a threat to European water quality. In: Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti B (eds) The European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press, UK, pp 379–404

    Chapter  Google Scholar 

  4. Refsgaard JC, Thorsen M, Jensen JB, Kleeschulte S, Hansen S (1999) Large scale modelling of groundwater contamination from nitrate leaching. J Hydrol 221:117–140

    Article  CAS  Google Scholar 

  5. Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  6. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen cycles: past, preserichnt, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  7. Howden NJK, Burt TP, Worrall F, Mathias SA, Whelan MJ (2013) Farming for water quality: balancing food security and nitrate pollution in UK river basins. Ann Assoc Am Geogr 103:397–407. https://doi.org/10.1080/00045608.2013.754672

    Article  Google Scholar 

  8. Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100:179–196

    Article  CAS  PubMed  Google Scholar 

  9. Spalding RF, Exner ME (1993) Occurrence of nitrate in groundwater—a review. J Environ Qual 22:392–402

    Article  CAS  Google Scholar 

  10. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global carbon cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  11. WHO (2011) Guidelines for drinking-water quality, 4th edn. WHO Press, Switzerland

    Google Scholar 

  12. Ward MH, deKok TM, Levallois P, Brender J, Gulis G, Nolan BT, VanDerslice J (2005) Workgroup report: drinking-water nitrate and health—recent findings and research needs. Environ Health Perspect 113:1607–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Powlson DS, Addiscott TM, Benjamin N, Cassman KG, de Kok TM, van Grinsven H, L’hirondel J-L, Avery AA, Van Kessel C (2008) When does nitrate become a risk for humans?. J Environ Qual 37:291–295. https://doi.org/10.2134/jeq2007.0177

    Article  CAS  Google Scholar 

  14. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639

    Article  CAS  Google Scholar 

  15. Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc B 368:20130164

    Article  CAS  Google Scholar 

  16. Galloway JN (1998) The global nitrogen cycle: changes and consequences. Environ Pollut 102:15–24

    Article  CAS  Google Scholar 

  17. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  18. Nosengo N (2003) Fertilized to death. Nature 425:894–895

    Article  CAS  PubMed  Google Scholar 

  19. Paul EA (2007) Soil microbiology, ecology and biochemistry, 3rd edn. Academic Press, UK

    Google Scholar 

  20. Rosswall T (1982) Microbiological regulation of the biogeochemical nitrogen cycle. Plant Soil 67:15–34

    Article  CAS  Google Scholar 

  21. Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 427:159–161

    Article  CAS  Google Scholar 

  22. Redmile-Gordon MA, Armenise E, Hirsch PR, Brookes PC (2014) Biodiesel co-product (BCP) decreases soil nitrogen (N) losses to groundwater. Water, Air Soil Pollut 225. https://doi.org/10.1007/s11270-013-1831-7

  23. Erisman JW, van Grinsven H, Grizzetti B, Bouraoui F, Powlson D, Sutton MA, Bleeker A, Reis S (2011) The European nitrogen problem in a global perspective. In: Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti B (eds) The European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press, UK, pp 9–31

    Chapter  Google Scholar 

  24. von Liebig J (1855) Principles of agricultural chemistry with special reference to the late researches made in England (ed Gregory W), Walton & Maberly, London, UK

    Google Scholar 

  25. Smil V (2002) Nitrogen and food production: proteins for human diets. Ambio 31:126–131

    Article  PubMed  Google Scholar 

  26. Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E, Johnes PJ, Ketzenberger J, Martinelli LA, Matson PA, Nziguheba G, Ojima D, Palm CA, Robertson GP, Sanchez PA, Townsend AR, Zhang FS (2009) Nutrient imbalances in agricultural development. Science 324:1519–1520

    Article  CAS  PubMed  Google Scholar 

  27. FAO, IFAD, WFP (2015) The state of food insecurity in the world 2015. Meeting the 2015 international hunger targets: taking stock of uneven progress, FAO, Rome, Italy

    Google Scholar 

  28. Leach AM, Galloway JN, Bleeker A, Erisman JW, Kohn R, Kitzes J (2012) A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ Dev 1:40–66

    Article  Google Scholar 

  29. Godfrey HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818. https://doi.org/10.1126/science.1185383

    Article  CAS  Google Scholar 

  30. Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490:254–257. https://doi.org/10.1038/nature11420

    Article  CAS  PubMed  Google Scholar 

  31. Sánchez PA (2010) Tripling crop yields in tropical Africa. Nat Geosci 3:299–300

    Article  CAS  Google Scholar 

  32. Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Cons 151:53–59

    Article  Google Scholar 

  33. Defra (2016) The British survey of fertiliser practice 2015: statistical notice. Report available from https://www.gov.uk/government/collections/fertiliser-usage. Accessed 27 Jan 2017

  34. Carvalho FP (2006) Agriculture, pesticides, food security and food safety. Environ Sci Policy 9:685–692

    Article  Google Scholar 

  35. Dalin C, Qiu H, Hanasaki N, Mauzerall DL, Rodriguez-Iturbe I (2015) Balancing water resource conservation and food security in China. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1504345112

    Article  PubMed  PubMed Central  Google Scholar 

  36. de Vial L, Bowles F, Dennis PJ (2010) Protecting water resources and health by protecting the environment: a case study. Issues Environ Sci Technol 30:122–139. https://doi.org/10.1039/9781849731058-00122

    Article  Google Scholar 

  37. Gong Y-K, Peng Y-Z, Yang Q, Wu W-M, Wang S-Y (2012) Formation of nitrous oxide in a gradient of oxygenation and nitrogen loading rate during denitrification of nitrite and nitrate. J Hazard Mater 227–228:453–460

    Article  PubMed  CAS  Google Scholar 

  38. Cassman KG, Doberman A, Walters DT (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31:132–140

    Article  PubMed  Google Scholar 

  39. Di HJ, Cameron KC (2002) Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutr Cycl Agroecosyst 46:237–256

    Article  Google Scholar 

  40. Goulding K, Jarvis S, Whitmore A (2008) Optimizing nutrient management for farm systems. Philos Trans R Soc B 363:667–680. https://doi.org/10.1098/rstb.2007.2177

    Article  CAS  Google Scholar 

  41. Cameron KC, Di HJ, Moir JL (2013) Nitrogen losses from the soil/plant system: a review. Ann Appl Biol 126:145–173. https://doi.org/10.1111/aab.12014

    Article  CAS  Google Scholar 

  42. Dungait JAJ, Cardenas LM, Blackwell MSA, Wu L, Withers PJA, Chadwick DR, Bol R, Murray PJ, Macdonald AJ, Whitmore AP, Goulding KWT (2012) Advances in the understanding of nutrient dynamics and management in UK agriculture. Sci Total Environ 434:39–50

    Article  CAS  PubMed  Google Scholar 

  43. Nila Rekha P, Kanwar RS, Nayak AK, Hoang CK, Pederson CH (2011) Nitrate leaching to shallow groundwater systems from agricultural fields with different management practices. J Environ Monit 13:2550–2558

    Article  CAS  PubMed  Google Scholar 

  44. Armstrong AC, Leeds-Harrison PB, Harris GL, Catt JA (1999) Measurement of solute fluxes in microporous soils: techniques, problems and precision. Soil Use Manag 15:240–246

    Article  Google Scholar 

  45. Bachmair S, Weiler M, Nützmann G (2009) Controls of land use and soil structure on water movement: lessons for pollutant transfer through the unsaturated zone. J Hydrol 369:241–252

    Article  CAS  Google Scholar 

  46. Jarvis NJ (2007) A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur J Soil Sci 58:523–546

    Article  Google Scholar 

  47. Gazis C, Feng X (2004) A stable isotope study of soil water: evidence for mixing and preferential flow paths. Geoderma 119(1–2):97–111

    Article  Google Scholar 

  48. Asano Y, Compton JE, Robbins Church M (2006) Hydrologic flow paths influence inorganic and organic nutrient leaching in a forest soil. Biochemistry 81:191–204

    CAS  Google Scholar 

  49. Barraclough D, Gardner CMK, Wellings SR, Cooper JD (1994) A tracer investigation into the importance of fissure flow in the unsaturated zone of the British Upper Chalk. J Hydrol 156:459–469

    Article  CAS  Google Scholar 

  50. Sudduth EB, Perakis SS, Bernhardt ES (2013) Nitrate in watersheds: straight from soils to streams? J Geophys Res: Biogeosciences 118:291–302

    Article  CAS  Google Scholar 

  51. Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Gay-Lacaux C, Rast S, Shindell D, Stevenson D, Van Noije T, Atherton C, Bell N, Bergman D, Butler T, Cofala J, Collins B, Doherty R, Ellingsen K, Galloway J, Gauss M, Montanaro V, Muller JF, Pitari G, Rodrigues J, Sanderson M, Solmon F, Strahan S, Schultz MSK, Szopa, S, Wild O (2006) Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Glob Biogeochem Cycles 20:GB4003. https://doi.org/10.1029/2005gb002672

    Article  CAS  Google Scholar 

  52. Barraclough D, Puri G (1995) The use of 15N pool dilution and enrichment to separate the heterotrophic and autotrophic pathways of nitrification. Soil Biol Biochem 27:17–22

    Article  CAS  Google Scholar 

  53. Tahovská K, Kaňa J, Bárta J, Oulehle F, Richter A, Šantrůčková H (2013) Microbial N immobilization is of great importance in acidified mountain spruce forest soils. Soil Biol Biochem 59:58–71

    Article  CAS  Google Scholar 

  54. Geisseler D, Horwath WR, Joergensen RG, Ludwig B (2010) Pathways of nitrogen utilization by soil microorganisms—a review. Soil Biol Biochem 42:2058–2067. https://doi.org/10.1016/j.soilbio.2010.08.021

    Article  CAS  Google Scholar 

  55. Jackson LE, Schimel JP, Firestone MK (1989) Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland. Soil Biol Biochem 21:409–415

    Article  Google Scholar 

  56. Recous S, Mary B, Faurie G (1990) Microbial immobilisation of ammonium and nitrate in cultivated soils. Soil Biol Biochem 22:913–922

    Article  CAS  Google Scholar 

  57. Recous S, Machet JM, Mary B (1992) The partitioning of fertilizer-N between soil and crop: comparison of ammonium and nitrate applications. Plant Soil 144:101–111

    Article  CAS  Google Scholar 

  58. Rice CW, Tiedje JM (1989) Regulation of nitrate assimilation by ammonium in soils and in isolated soil microorganisms. Soil Biol Biochem 21:597–602

    Article  CAS  Google Scholar 

  59. Giles M, Morley N, Baggs EM, Daniell TJ (2012) Soil nitrate reducing processes—drivers, mechanisms for spatial variation, and significance for nitrous oxide production. Front Microbiol 3. https://doi.org/10.3389/fmicb.2012.00407

  60. Thangarajan R, Bolan NS, Tian G, Naidu R, Kunhikrishnan A (2013) Role of organic amendment application on greenhouse gas emission from soil. Sci Total Environ 465:72–96. https://doi.org/10.1016/j.scitotenv.2013.01.031

    Article  CAS  PubMed  Google Scholar 

  61. Almasri MN, Kaluarachichi JJ (2004) Assessment and management of long-term nitrate pollution of groundwater in agriculture-dominated watersheds. J Hydrol 295:225–245

    Article  CAS  Google Scholar 

  62. Mariotti A, Landreau A, Simon B (1988) N isotope biochemistry and natural denitrification process in groundwater: application to the chalk aquifer of northern France. Geochim Cosmochim Acta 52:1869–1878

    Article  CAS  Google Scholar 

  63. Thomas S, Waterland H, Dann R, Close M, Francis G, Cook F (2012) Nitrous oxide dynamics in a deep soil-alluvial gravel vadose zone following nitrate leaching. Soil Sci Soc Am J 76:1333–1346

    Article  CAS  Google Scholar 

  64. Vogel JC, Talma AS, Heaton THE (1981) Gaseous nitrogen as evidence for identification in groundwater. J Hydrol 50:191–200

    Article  CAS  Google Scholar 

  65. Yuan L, Pang Z, Huang T (2012) Integrated assessment on groundwater nitrate by unsaturated zone probing and aquifer sampling with environmental tracers. Environ Pollut 171:226–233

    Article  CAS  PubMed  Google Scholar 

  66. Goulding KWT, Poulton PR, Webster CP, Howe MT (2000) Nitrate leaching from the broadbalk wheat experiment, Rothamsted, UK, as influenced by fertilizer and manure inputs and the weather. Soil Use and Management 16:244–250

    Article  Google Scholar 

  67. Goulding K (2000) Nitrate leaching from arable and horticultural land. Soil Use Manag 16:145–151

    Article  Google Scholar 

  68. Granger SJ, Heaton THE, Bol R, Bilotta GS, Bulter P, Haygarth PM, Owens PN (2008) Using δ15N and δ18O to evaluate the sources and pathways of NO3 in rainfall event discharge from drained agricultural grassland lysimeters at high temporal resolutions. Rapid Commun Mass Spectrom 22:1681–1689

    Article  CAS  PubMed  Google Scholar 

  69. Deutsch B, Liskow I, Kahle P, Voss M (2005) Variations in the δ15N and δ18O values of nitrate in drainage water of two fertilized fields in Mecklenburg-Vorpommern (Germany). Aquat Sci 67:156–165

    Article  CAS  Google Scholar 

  70. Harremoës P (1977) Introduction to the proceedings of the conference on nitrogen as a water pollutant, Copenhagen, August 18–20 1975. Prog Water Technol 8:1–2

    Google Scholar 

  71. Lehr JH (1971) Forward to the proceedings of the national ground water quality symposium. Denver, Colorado, 25–27 Aug

    Google Scholar 

  72. Young CP, Oakes DB, Wilkinson WB (1976) Prediction of future nitrate concentrations in ground water. Ground Water 14:426–438

    Article  CAS  Google Scholar 

  73. Smith DB, Wearn PL, Richards HJ, Rowe PC (1970) Water movement in the unsaturated zone of high and low permeability strata by measuring natural tritium, Isotope Hydrology. In: Proceedings of a symposium on the use of isotopes in hydrology held by the international atomic energy agency in co-operation with the United Nations education and scientific and cultural organisation in Vienna 9–13 Mar 1970, pp 73–87

    Google Scholar 

  74. Nielsen DR, Biggar JW, Wierenga PJ (1982) Nitrogen transport processes in soil. In: Stevenson FJ (ed) Nitrogen in agricultural soils. American Society of Agronomy, USA, pp 423–448

    Google Scholar 

  75. Allison FE (1955) The enigma of soil nitrogen balance sheets. Adv Agron 7:213–250

    Article  Google Scholar 

  76. Stanford G (1982) Assessment of soil nitrogen availability. In: Stevenson FJ (ed) Nitrogen in agricultural soils. American Society of Agronomy, USA, pp 651–688

    Google Scholar 

  77. Keeney DR (1982) Nitrogen management for maximum efficiency and minimum pollution. In: Stevenson FJ (ed) Nitrogen in agricultural soils. American Society of Agronomy, USA, pp 605–649

    Google Scholar 

  78. Dobermann A, Cassman KC (2004) Environmental dimensions of fertilizer nitrogen: what can be done to increase nitrogen use efficiency and ensure global food security? In: Mosier AR, Syers JK, Freney JR (eds) Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment, SCOPE 65, Island Press, Washington, DC, USA pp 261–278

    Google Scholar 

  79. Gooday R, Anthony S, Fawcett L (2008) A field scale model of soil drainage and nitrate leaching for application in nitrate vulnerable zones. Environ Model Softw 23:1045–1055

    Article  Google Scholar 

  80. Vogel H-J, Cousin I, Ippisch O, Bastian P (2006) The dominant role of structure for solute transport in soil: experimental evidence and modelling of structure and transport in a field experiment. Hydrol Earth Syst Sci 10:495–506

    Article  Google Scholar 

  81. Defra (2009) Protecting our water, soil and air: a code of good agricultural practice for farmers, growers and land managers. The Stationary Office, UK

    Google Scholar 

  82. Defra (2010) Fertiliser manual (RB209), p 60, 65. Report available from http://www.ahdb.org.uk/projects/CropNutrition.aspx. Accessed 26 Mar 2014

  83. Smith JU, Bradbury NJ, Addiscott TM (1996) SUNDIAL: a PC-based system for simulating nitrogen dynamics in arable land. Agron J 88:38–43. https://doi.org/10.2134/agronj1996.00021962008800010008x

    Article  Google Scholar 

  84. Brown L, Scholefield D, Jewkes EC, Lockyer DR, del Prado A (2005) NGAUGE: a decision support system to optimise N fertilisation of British grassland for economic and environmental goals. Agr Ecosyst Environ 109:20–39. https://doi.org/10.1016/j.agee.2005.02.021

    Article  Google Scholar 

  85. Garnett T, Conn V, Plett D, Conn S, Zanghellini J, Mackenzie N, Enju A, Francis K, Holtham L, Roessner U, Boughton B, Bacic A, Shirley N, Rafalski A, Dhugga K, Tester M, Kaiser BN (2013) The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle. New Phytol. https://doi.org/10.1111/nph.12166

    Article  PubMed  Google Scholar 

  86. Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387. https://doi.org/10.1093/jxb/erm097

    Article  CAS  PubMed  Google Scholar 

  87. Rasmussen PE, Keith WT, Brown JR, Grace PR, Janzen HH, Körschens M (1998) Long-term agroecosystem experiments: assessing agricultural sustainability and global change. Science 282:893–896

    Article  CAS  PubMed  Google Scholar 

  88. Gärdenäs AI, Ågren GI, Bird JA, Clarholm M, Hallin S, Ineson P, Kätterer T, Knicker H, Nilsson SI, Näsholm T, Ogle S, Paustian K, Persson T, Stendahl J (2011) Knowledge gaps in soil carbon and nitrogen interactions—from molecular to global scale. Soil Biol Biochem 43:702–717. https://doi.org/10.1016/j.soilbio.2010.04.006

    Article  CAS  Google Scholar 

  89. Barraclough D (1995) 15N isotope dilution techniques to study soil nitrogen transformations and plant uptake. Fertiliser Research 42:185–192

    Article  CAS  Google Scholar 

  90. Barraclough D (1997) The direct or MIT route for nitrogen immobilisation: a 15N mirror image study with leucine and glycine. Soil Biol Biochem 29:101–108

    Article  CAS  Google Scholar 

  91. Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 75:139–157

    Article  Google Scholar 

  92. Davidson EA, Hart SC, Shanks CA, Firestone MK (1991) Measuring gross nitrogen mineralisation, immobilisation, and nitrification by 15N isotopic pool dilution in intact soil cores. J Soil Sci 42:335–349

    Article  CAS  Google Scholar 

  93. Jansson SL, Persson J (1982) Mineralisation and immobilisation of soil nitrogen. In: Stevenson FJ (ed) Nitrogen in agricultural soils. American Society of Agronomy, USA, pp 229–252

    Google Scholar 

  94. Kirkham D, Bartholomew WV (1955) Equations for following nitrogen transformations in soil utilizing tracer data: II. Soil Sci Soc Am Proc 19:189–192. https://doi.org/10.2136/sssaj1955.03615995001900020020x

    Article  CAS  Google Scholar 

  95. Bjarnason S (1988) Calculation of gross nitrogen immobilization and mineralization in soil. J Soil Sci 39(3):393–406

    Article  Google Scholar 

  96. Brand WA, Coplen TB (2012) Stable isotope deltas: tiny, yet robust signatures in nature. Isot Environ Health Stud 48:393–409

    Article  CAS  Google Scholar 

  97. Brand WA, Coplen TB, Vogl J, Rosner M, Prohaska T (2014) Assessment of international reference materials for isotope-ratio analysis (IUPAC technical report). Pure Appl Chem 86:425–467. https://doi.org/10.1515/pac-2013-1023

    Article  CAS  Google Scholar 

  98. Hoering T (1955) Variation of nitrogen-15 abundance in naturally occurring substances. Science 122:1233–1234

    Article  CAS  PubMed  Google Scholar 

  99. Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203

    Article  PubMed  Google Scholar 

  100. Urey HC (1947) The thermodynamic properties of isotopic substances, Liversidge Lecture, Delivered before the Chemical Society in the Royal Institution on December 18th, 1946, pp 562–581

    Google Scholar 

  101. Coplen TB, Hopple JA, Böhlke JK, Peiser HS, Rieder SE, Krouse HR, Rosman KJR, Ding T, Vocke RD Jr, Révész KM, Lamberty A, Taylor P, De Bièvre P (2002) Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents. U.S. Geological Survey Water Resources Investigations Report 01-4222, U.S. Geological Survey, Denver, USA

    Google Scholar 

  102. Sulzman EW (2007) Stable isotope chemistry and measurement: a primer. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science, 2nd edn. Ecological methods and concepts series. Blackwell Publishing, UK, pp 1–21

    Google Scholar 

  103. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5:e9672. https://doi.org/10.1371/journal.pone.0009672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Spoelstra J, Schiff SL, Elgood RJ, Semkin RG, Jeffries DS (2001) Tracing the sources of exported nitrate in the Turkey Lakes watershed using 15N/14N and 18O/16O isotopic ratios. Ecosystems 4:536–544

    Article  CAS  Google Scholar 

  105. Mayer B, Boyer EW, Goodale C, Jaworski NA, van Breemen N, Howarth RW, Seitzinger S, Billen G, Lajtha K, Nadelhoffer K, van Dam D, Hetling LJ, Nosal M, Paustian K (2002) Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: isotopic constraints. Biogeochemistry 57:171–197

    Article  Google Scholar 

  106. Kellman LM (2005) A study of tile drain nitrate—δ15N values as a tool for assessing nitrate sources in an agricultural region. Nutr Cycl Agroecosyst 71:131–137. https://doi.org/10.1007/s10705-004-1925-0

    Article  Google Scholar 

  107. Moore KB, Ekwurzel B, Esser BK, Hudson GB, Moran JE (2006) Sources of groundwater nitrate revealed using residence time and isotope methods. Appl Geochem 21:1016–1029

    Article  CAS  Google Scholar 

  108. Baily A, Rock L, Watson CJ, Fenton O (2011) Spatial and temporal variations in groundwater nitrate at an intensive dairy farm in south-east Ireland: insights from stable isotope data. Agr Ecosyst Environ 144:308–318

    Article  CAS  Google Scholar 

  109. Kelley CJ, Keller CK, Evans RD, Orr CH, Smith JL, Harlow BA (2013) Nitrate-nitrogen and oxygen isotope ratios for identification of nitrate sources and dominant nitrogen cycle processes in a tile-drained dryland agricultural field. Soil Biol Biochem 57:731–738

    Article  CAS  Google Scholar 

  110. Pastén-Zapata E, Ledesma-Ruiz R, Harter T, Ramírez AI, Mahlknecht J (2014) Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Sci Total Environ 470–471:855–864. https://doi.org/10.1016/j.scitotenv.2013.10.043

    Article  CAS  PubMed  Google Scholar 

  111. Ostrom NE, Knoke KE, Hedin LO, Robertson GP, Smucker AJM (1998) Temporal trends in nitrogen isotope values of nitrate leaching from an agricultural soil. Chem Geol 146:219–227

    Article  CAS  Google Scholar 

  112. Burns DA, Kendall C (2002) Analysis of δ15N and δ18O to differentiate NO 3 sources in runoff at two watersheds in the Catskill Mountains of New York. Water Resour Res 38:1051. https://doi.org/10.1029/2001WR000292

    Article  Google Scholar 

  113. Kellman LM, Hillaire-Marcel C (2003) Evaluation of nitrogen isotopes as indicators of nitrate contamination sources in an agricultural watershed. Agr Ecosyst Environ 95:87–102

    Article  CAS  Google Scholar 

  114. Seiler RL (2005) Combined use of 15N and 18O of nitrate and 11B to evaluate nitrate contamination in groundwater. Appl Geochem 20:1626–1636

    Article  CAS  Google Scholar 

  115. Showers WJ, Genna B, McDade T, Bolich R, Fountain JC (2008) Nitrate contamination in groundwater on an urbanized dairy farm. Environ Sci Technol 42:4683–4688

    Article  CAS  PubMed  Google Scholar 

  116. Heaton THE, Stuart ME, Sapiano M, Sultana MM (2012) An isotope study of the sources of nitrate in Malta’s groundwater. J Hydrol 414–415:244–254

    Article  CAS  Google Scholar 

  117. Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol (Isot Geosci Sect) 59:87–102

    Article  CAS  Google Scholar 

  118. Kendall C, Elliott EM, Wankel SD (2007) Tracing anthropogenic inputs of nitrogen to ecosystems. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science, 2nd edn. Ecological methods and concepts series. Blackwell Publishing, UK, pp 375–449

    Chapter  Google Scholar 

  119. Xue D, Botte J, De Baets B, Accoe F, Nestler A, Taylor P, Van Cleemput O, Berglund M, Boeckx P (2009) Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Res 43:1159–1170

    Article  CAS  PubMed  Google Scholar 

  120. Bowman WD, Schardt JC, Schmidt SK (1996) Symbiotic N2-fixation in alpine tundra: ecosystem input and variation in fixation rates amongst communities. Oecologia 108:345–350

    Article  PubMed  Google Scholar 

  121. Cadisch G, Hairiah K, Giller KE (2000) Applicability of the natural 15N abundance technique to measure N2 fixation in Arachis hypogaea grown on an Ultisol. Neth J Agric Sci 48:31–45

    CAS  Google Scholar 

  122. Arndt SK, Kahmen A, Arampatsis C, Popp M, Adams M (2004) Nitrogen fixation and metabolism by groundwater-dependent perennial plants in a hyperarid desert. Oecologia 141:385–394

    Article  PubMed  Google Scholar 

  123. Binkley D, Sollins P, McGill WB (1985) Natural abundance of nitrogen-15 as a tool for tracing alder-fixed nitrogen. Soil Sci Soc Am J 49:444–447

    Article  CAS  Google Scholar 

  124. Högberg P (1986) Nitrogen-fixation and nutrient relations in savanna woodland trees (Tanzania). J Appl Ecol 23:675–688

    Article  Google Scholar 

  125. Spriggs AC, Stock WD, Dakora FD (2003) Influence of mycorrhizal associations on foliar δ15N values of legume and non-legume shrubs and trees in the fynbos of South Africa: implications for estimating N2 fixation using the 15N natural abundance method. Plant Soil 255:495–502

    Article  CAS  Google Scholar 

  126. Shearer G, Kohl DH (1986) N2-fixation in field settings: estimations based on natural 15N abundance. Aust J Plant Physiol 13:699–756

    CAS  Google Scholar 

  127. Shearer G, Kohl DH (1988) Natural 15N abundance as a method of estimating the contribution of biologically fixed nitrogen to N2-fixing systems: potential for non-legumes. Plant Soil 110:317–327

    Article  CAS  Google Scholar 

  128. Marshall JD, Brooks JR, Lajtha K (2007) Sources of variation in the stable isotopic composition of plants. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science, 2nd edn. Ecological methods and concepts series. Blackwell Publishing, UK, pp 22–60

    Chapter  Google Scholar 

  129. Wu D, Köster JR, Cárdenas LM, Brüggemann N, Lewicka-Szczebak D, Bol R (2016) N2O source partitioning in soils using 15N site preference values corrected for the N2O reduction effect. Rapid Commun Mass Spectrom 30:620–626. https://doi.org/10.1002/rcm.7493

    Article  CAS  PubMed  Google Scholar 

  130. Yoshida N (1988) 15N-depleted N2O as a product of nitrification. Nature 335:528–529

    Article  CAS  Google Scholar 

  131. Yoshida N, Toyoda S (2000) Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers. Nature 405:330–334

    Article  CAS  PubMed  Google Scholar 

  132. Schmidt H-L, Werner RA, Yoshida N, Well R (2004) Is the isotopic composition of nitrous oxide an indicator for its origin from nitrification or denitrification? A theoretical approach from referred data and microbiological and enzyme kinetic aspects. Rapid Commun Mass Spectrom 18:2036–2040. https://doi.org/10.1002/rcm.1586

    Article  CAS  PubMed  Google Scholar 

  133. Toyoda S, Mutobe H, Yamagishi H, Yoshida N, Tanji Y (2005) Fractionation of N2O isotopomers during production by denitrifier. Soil Biol Biochem 37:1535–1545. https://doi.org/10.1016/j.soilbio.2005.01.009

    Article  CAS  Google Scholar 

  134. Sutka RL, Ostrom NE, Ostrom PH, Breznak JA, Gandhi H, Pitt AJ, Li F (2006) Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Appl Environ Microbiol 72:638–644. https://doi.org/10.1128/AEM.72.1.638-644.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cardenas LM, Chadwick D, Scholefield D, Fychan R, Marley CL, Jones R, Bol R, Well R, Vallejo A (2007) The effect of diet manipulation on nitrous oxide and methane emissions from manure application to incubated grassland soils. Atmos Environ 41:7096–7107

    Article  CAS  Google Scholar 

  136. Ostrom NE, Pitt A, Sutka R, Ostrom PH, Grandy AS, Huizinga KM, Robertson GP (2007) Isotopologue effects during N2O reduction in soils and in pure cultures of denitrifiers. J Geophys Res 112:G02005. https://doi.org/10.1029/2006JG000287

    Article  CAS  Google Scholar 

  137. Meijide A, Cardenas LM, Bol R, Bergstermann A, Goulding K, Well R, Vallejo A, Scholefield D (2010) Dual isotope and isotopomer measurements for the understanding of N2O production and consumption during denitrification in an arable soil. Eur J Soil Sci 61:364–374. https://doi.org/10.1111/j.1365-2389.2010.01233.x

    Article  CAS  Google Scholar 

  138. Bergstermann A, Cárdenas L, Bol R, Gilliam L, Goulding K, Meijide A, Scholefield D, Vallejo A, Well R (2011) Effects of antecedent soil moisture conditions on emissions and isotopologue distribution of N2O during denitrification. Soil Biol Biochem 43:240–250

    Article  CAS  Google Scholar 

  139. Köster JR, Cárdenas LM, Bol R, Lewicka-Szczebak D, Senbayram M, Well R, Giesemann A, Dittert K (2015) Anaerobic digestates lower N2O emissions compared to cattle slurry by affecting rate and product stoichiometry of denitrification—An N2O isotopomer case study. Soil Biol Biochem 84:65–74

    Article  CAS  Google Scholar 

  140. Stein LY, Yung YL (2003) Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide. Annu Rev Earth Planet Sci 31:329–356. https://doi.org/10.1146/annurev.earth.31.110502.080901

    Article  CAS  Google Scholar 

  141. Böhlke JK, Denver JM (1995) Combined use of groundwater dating, chemical, and isotopic analysis to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resour Res 31:2319–2339

    Article  Google Scholar 

  142. Högberg P (1991) Development of 15 N enrichment in a nitrogen-fertilised forest soil-plant system. Soil Biol Biochem 23:335–338

    Article  Google Scholar 

  143. Högberg P, Högbom L, Schinkel H, Högberg M, Johannisson C, Wallmark H (1996) 15N of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia 108:207–214

    Article  PubMed  Google Scholar 

  144. Johannisson C (1996) 15N abundance as an indicator of N-saturation of coniferous forest, Ph.D. Thesis, SLU, Umea, Sweden

    Google Scholar 

  145. Emmett BA, Kjønass OJ, Gundersen P, Koopmans C, Tietema A, Sleep D (1998) Natural abundance of 15N in forests across a nitrogen deposition gradient. For Ecol Manage 101:9–18

    Article  Google Scholar 

  146. Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W, Robertson GP, Santos OC, Treseder K (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65

    CAS  Google Scholar 

  147. Garten CT Jr, Hansen PJ, Todd DE Jr, Lu BB, Brice DJ (2007) Sources of variation in the stable isotopic composition of plants. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science, 2nd edn. Ecological methods and concepts series. Blackwell Publishing, UK, pp 61–82

    Chapter  Google Scholar 

  148. Evans RD (2007) Soil nitrogen isotope composition. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science, 2nd edn. Ecological Methods and Concepts Series, Blackwell Publishing, Oxford, UK, pp 83–98

    Google Scholar 

  149. Barraclough D, Geens EL, Maggs JM (1984) Fate of fertiliser nitrogen applied to grassland. II. Nitrogen-15 leaching results. J Soil Sci 35:191–199

    Article  CAS  Google Scholar 

  150. Knowles TDJ, Chadwick DR, Bol R, Evershed RP (2010) Tracing the rate and extent of N and C flow from 13C,15N-glycine and glutamate into individual de novo synthesised soil amino acids. Org Geochem 41:1259–1268. https://doi.org/10.1016/j.orggeochem.2010.09.003

    Article  CAS  Google Scholar 

  151. Gibbs P, Barraclough D (1998) Gross mineralisation of nitrogen during the decomposition of leaf protein I (Ribulose 1,5-diphosphate carboxylase) in the presence or absence of sucrose. Soil Biol Biochem 30:1821–1827

    Article  CAS  Google Scholar 

  152. Norman AG, Werkman CH (1943) The use of the nitrogen isotope N15 in determining nitrogen recovery from plant materials decomposing in soil. J Am Soc Agron 35:1023–1025

    Article  CAS  Google Scholar 

  153. Glendining MJ, Poulton PR, Powlson DS, Jenkinson DS (1997) Fate of 15N-labelled fertilizer applied to spring barley grown on soils of contrasting nutrient status. Plant Soil 195:83–98

    Article  CAS  Google Scholar 

  154. Hancock JM, McNeill AM, McDonald GK, Holloway RE (2011) Fate of fertiliser N applied to wheat on a coarse textured highly calcareous soil under simulated semi-arid conditions. Plant Soil 348:139–153. https://doi.org/10.1007/s11104-011-0917-5

    Article  CAS  Google Scholar 

  155. Jenson LS, Pedersen IS, Hansen TB, Nielsen NE (2000) Turnover and fate of 15N-labelled cattle slurry ammonium-N applied in the autumn to winter wheat. Eur J Agron 12:23–35

    Article  Google Scholar 

  156. Bosshard C, Sørensen P, Frossard E, Dubois D, Mäder P, Nanzer S, Oberson A (2009) Nitrogen use efficiency of 15N-labelled sheep manure and mineral fertiliser applied to microplots in long-term organic and conventional cropping systems. Nutr Cycl Agroecosyst 83:271–287. https://doi.org/10.1007/s10705-008-9218-7

    Article  Google Scholar 

  157. Glendining MJ, Poulton PR, Powlson DS, MacDonald AJ, Jenkinson DS (2001) Availability of the residual nitrogen from a single application of 15N-labelled fertiliser to subsequent crops in a long-term continuous barley experiment. Plant Soil 233:231–239

    Article  CAS  Google Scholar 

  158. Kumar K, Goh KM (2002) Recovery of 15N-labelled fertiliser applied to winter wheat and perennial ryegrass crops and residual 15N recovery by succeeding wheat crops under different crop residue management practices. Nutr Cycl Agroecosyst 62:123–130

    Article  CAS  Google Scholar 

  159. Macdonald AJ, Poulton PR, Powlson DS, Jenkinson DS (1997) Effects of season, soil type and cropping on recoveries, residues and losses of 15N-labelled fertilizer applied to arable crops in spring. J Agric Sci 129:125–154

    Article  Google Scholar 

  160. Nario A, Pino I, Zapata F, Paz Albornoz M, Baherle P (2003) Nitrogen (15N) fertiliser use efficiency in peach (Prunus persica L.) cv Goldencrest trees in Chile. Sci Hortic 97:279–287

    Article  Google Scholar 

  161. Goulding KWT, Webster CP, Powlson DS, Poulton PR (1993) Denitrification losses of nitrogen fertiliser applied to winter wheat following ley and arable rotations as estimated by acetylene inhibition and 15N balance. J Soil Sci 44:63–72

    Article  CAS  Google Scholar 

  162. Powlson DS, Hart PBS, Poulton PR, Johnston AE, Jenkinson DS (1992) Influence of soil type, crop management and weather on the recovery of 15N-labelled fertilizer applied to winter wheat in spring. J Agric Sci 118:83–100

    Article  CAS  Google Scholar 

  163. Jenkinson DS (2001) The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. Plant Soil 228:3–15

    Article  CAS  Google Scholar 

  164. Nannipieri P, Eldor P (2009) The chemical and functional characterization of soil N and its biotic components. Soil Biol Biochem 41:2357–2369

    Article  CAS  Google Scholar 

  165. Watkins N, Barraclough D (1996) Gross rates of N mineralization associated with the decomposition of plant residues. Soil Biol Biochem 28:169–175

    Article  CAS  Google Scholar 

  166. Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  167. Arkoun M, Sarda X, Jannin L, Laîne P, Etienne P, Garcia-Mina J, Yvin J, Ourry A (2012) Hydroponics versus field lysimeter studies of urea, ammonium, and nitrate uptake by oilseed rape (Brassica napus L.). J Exp Bot 63:5245–5258

    Article  CAS  PubMed  Google Scholar 

  168. Puri G, Ashman MR (1999) Microbial immobilization of 15N-labelled ammonium and nitrate in a temperate woodland soil. Soil Biol Biochem 31:929–931

    Article  CAS  Google Scholar 

  169. Inselsbacher E, Hinko-Najera Umana N, Stange FC, Gorfer M, Schüller E, Ripka K, Zechmeister-Boltenstern S, Hood-Novotny R, Strauss J, Wanek W (2010) Short-term competition between crop plants and soil microbes for inorganic N fertilizer. Soil Biol Biochem 42:360–372. https://doi.org/10.1016/j.soilbio.2009.11.019

    Article  CAS  Google Scholar 

  170. Kaštovská E, Šantrůčková H (2011) Comparison of uptake of different N forms by soil microorganisms and two wet-grassland plants: a pot study. Soil Biol Biochem 43:1285–1291. https://doi.org/10.1016/j.soilbio.2011.02.021

    Article  CAS  Google Scholar 

  171. Inselsbacher E, Wanek W, Strauss J, Zechmeister-Boltenstern S, Müller C (2013) A novel 15N tracer model reveals: plant nitrate uptake governs nitrogen transformation rates in agricultural soils. Soil Biol Biochem 57:301–310

    Article  CAS  Google Scholar 

  172. Sebilo M, Mayer B, Nicolardot B, Pinay G, Mariotti A (2013) Long-term fate of nitrate fertilizer in agricultural soils. Proc Natl Acad Sci USA 110:18185–18189. https://doi.org/10.1073/pnas.1305372110

    Article  PubMed  PubMed Central  Google Scholar 

  173. Ladd JN, Amato M (1986) The fate of nitrogen from legume and fertiliser sources in soils successively cropped with wheat under field conditions. Soil Biol Biochem 18:417–425

    Article  Google Scholar 

  174. Pilbeam CJ, Hutchison D (1998) Fate of nitrogen applied in different fertilisers to the surface of a calcareous soil in Syria. Nutr Cycl Agroecosyst 52:55–60

    Article  Google Scholar 

  175. Gainey PL (1936) Total nitrogen as a factor influencing nitrate accumulation in soils. Soil Sci 42:157–163

    Article  CAS  Google Scholar 

  176. Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  177. Stanford G, Smith SJ (1972) Nitrogen mineralization potentials of soils. Soil Sci Soc Am J 36:465–472

    Article  CAS  Google Scholar 

  178. Sharifi M, Zebarth BJ, Burton DL, Grant CA, Cooper JM (2007) Evaluation of some indices of potentially mineralisable nitrogen in soil. Soil Sci Soc Am J 71:1233–1239. https://doi.org/10.2136/sssaj2006.0265

    Article  CAS  Google Scholar 

  179. Schoenheimer R, Rittenberg D, Foster GL, Keston AS, Ratner S (1938) The application of the nitrogen isotope N15 for the study of protein metabolism. Science 88:599–600

    Article  CAS  PubMed  Google Scholar 

  180. Rittenberg D, Keston AS, Rosebury F, Schoenheimer R (1939) Studies in protein metabolism: II. The determination of nitrogen isotopes in organic compounds. J Biol Chem 127:291–299

    CAS  Google Scholar 

  181. Schoenheimer R, Rittenberg D (1939) Studies in protein metabolism: I. General considerations in the application of isotopes to the study of the protein metabolism. The normal abundance of nitrogen isotopes in amino acids. J Biol Chem 127:285–290

    Google Scholar 

  182. McKinney CR, McCrea JM, Epstein S, Allen HA, Urey HC (1950) Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. Rev Sci Instrum 21:724–730

    Article  CAS  PubMed  Google Scholar 

  183. Nier AO (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys Rev 77:789–793

    Article  CAS  Google Scholar 

  184. Matthews DE, Hayes JM (1978) Isotope-ratio-monitoring gas chromatography-mass spectrometry. Anal Chem 50:1465–1473

    Article  CAS  Google Scholar 

  185. Sweeley CC, Elliott WH, Fries I, Ryhage R (1966) Mass spectrometric determination of unresolved components in gas chromatographic effluents. Anal Chem 38:1549–1553

    Article  CAS  PubMed  Google Scholar 

  186. Barrie A, Bricout J, Koziet J (1984) Gas chromatography-stable isotope ratio analysis at natural abundance levels. Biomed Mass Spectrom 11:583–588

    Article  CAS  Google Scholar 

  187. Meier-Augenstein W (1999) Applied gas chromatography coupled to isotope ratio mass spectrometry. J Chromatogr A 842:351–371

    Article  CAS  PubMed  Google Scholar 

  188. Merritt DA, Hayes JM (1994) Nitrogen isotopic analyses by isotope-ratio-monitoring gas chromatography/mass spectrometry. J Am Soc Mass Spectrom 5:387–397

    Article  CAS  PubMed  Google Scholar 

  189. He HB, Li XB, Zhang W, Zhang XD (2011) Differentiating the dynamics of native and newly immobilized amino sugars in soil frequently amended with inorganic nitrogen and glucose. Eur J Soil Sci 62:144–151. https://doi.org/10.1111/j.1365-2389.2010.01324.x

    Article  CAS  Google Scholar 

  190. Geisseler D, Horwath WR (2014) Investigating amino acid utilisation by soil microorganisms using compound specific stable isotope analysis. Soil Biol Biochem 74:100–105. https://doi.org/10.1016/j.soilbio.2014.02.024

    Article  CAS  Google Scholar 

  191. Nelson CJ, Alexova R, Jacoby RP, Millar AH (2014) Proteins with high turnover rate in barley leaves estimated by proteome analysis combined with in planta isotope labelling. Plant Physiol 166:91–108. https://doi.org/10.1104/pp.114.243014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lee TA, Forrest TM, Wilson GE, Hardy JK (1990) The use of multiple mass spectral line pairs for enhanced precision in isotope enrichment studies of 15N-labeled amino acids. Anal Biochem 185:24–28

    Article  CAS  PubMed  Google Scholar 

  193. Metges CC, Petzke K-J, Hennig U (1996) Gas chromatography/combustion/isotope ratio mass spectrometric comparison of N-acetyl- and N-pivaloyl amino acid esters to measure 15N isotopic abundances in physiological samples: a pilot study on amino acid synthesis in the upper gastro-intestinal tract of minipigs. J Mass Spectrom 31:367–376

    Article  CAS  PubMed  Google Scholar 

  194. Brand WA, Tegtmeyer AR, Hilkert A (1994) Compound-specific isotope analysis: extending toward 15N/14N and 18O/16O. Org Geochem 21:585–594

    Article  CAS  Google Scholar 

  195. Brenna JT (1994) High-precision gas isotope ratio mass spectrometry: recent advances in instrumentation and biomedical applications. Acc Chem Res 27:340–346

    Article  CAS  Google Scholar 

  196. Macko SA, Uhle ME, Engel MH, Andrusevich V (1997) Stable nitrogen isotope analysis of amino acid enantiomers by gas chromatography/combustion/isotope ratio mass spectrometry. Anal Chem 69:926–929

    Article  CAS  PubMed  Google Scholar 

  197. Hofmann D, Gehre M, Jung K (2003) Sample preparation techniques for the determination of natural 15N/14N variations in amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Isot Environ Health Stud 39:233–244. https://doi.org/10.1080/1025601031000147630

    Article  CAS  Google Scholar 

  198. Takano Y, Chikaraishi Y, Ogawa NO, Kitazato H, Ohkouchi N (2009) Compound-specific nitrogen isotope analysis of D-alanine, L-alanine, and valine: application of diastereomer separation to δ15N and microbial peptidoglycan studies. Anal Chem 81:394–399

    Article  CAS  PubMed  Google Scholar 

  199. Walsh RG, He S, Yarnes CT (2014) Compound-specific δ13C and δ15N analysis of amino acids: a rapid, chloroformate-based method for ecological studies. Rapid Commun Mass Spectrom 28:96–108. https://doi.org/10.1002/rcm.6761

    Article  CAS  PubMed  Google Scholar 

  200. Hofmann D, Jung K, Segschneider H-J, Gehre M, Schüürman G (1995) 15N/14N analysis of amino acids with GC-C-IRMS—methodical investigations and ecotoxicological applications. Isot Environ Health Stud 31:367–375. https://doi.org/10.1080/10256019508036284

    Article  CAS  Google Scholar 

  201. Metges CC, Petzke K-J (1997) Measurement of 15N/14N isotopic combustion in individual plasma free amino acids of human adults at natural abundance by gas chromatography-combustion-isotope ratio mass spectrometry. Anal Biochem 247:158–164

    Article  CAS  PubMed  Google Scholar 

  202. Simpson IA, Bol R, Dockrill SJ, Petzke K-J, Evershed RP (1997) Compound-specific δ15N amino acid signals in palaeosols as indicators of early land use: a preliminary study. Archaeol Prospect 4:147–152

    Article  Google Scholar 

  203. Simpson IA, Bol R, Bull ID, Evershed RP, Petzke K-J, Dockrill SJ (1999) Interpreting early land management through compound specific stable isotope analyses of archaeological soils. Rapid Commun Mass Spectrom 13:1315–1319

    Article  CAS  PubMed  Google Scholar 

  204. Bol R, Ostle NJ, Petzke KJ, Watson A, Cockburn J (1998) Amino acid 15N/14N analysis at natural abundances: a new tool for soil organic matter studies in agricultural systems. Isot Environ Health Stud 34:87–93. https://doi.org/10.1080/10256019708036336

    Article  CAS  Google Scholar 

  205. Bol R, Ostle NJ, Chenu CC, Petzke K-J, Werner RA, Balesdent J (2004) Long term changes in the distribution and δ15N values of individual soil amino acids in the absence of plant and fertiliser inputs. Isot Environ Health Stud 40:243–256. https://doi.org/10.1080/10256010412331305607

    Article  CAS  Google Scholar 

  206. Bol R, Ostle NJ, Petzke K-J, Chenu CC, Balesdent J (2008) Amino acid 15N in long-term bare fallow soils: influence of annual N fertiliser and manure applications. Eur J Soil Sci 59:617–629. https://doi.org/10.1111/j.1365-2389.2008.01013.x

    Article  CAS  Google Scholar 

  207. Petzke K-J, Boeing H, Klaus S, Metges CC (2005) Carbon and nitrogen stable isotopic composition of hair protein and amino acids can be used as biomarkers for animal-derived dietary protein intake in humans. J Nutr 135:1515–1520

    Article  CAS  PubMed  Google Scholar 

  208. Petzke K-J, Boeing H, Metges CC (2005) Choice of dietary protein of vegetarians and omnivores is reflected in their hair protein 13C and 15N abundance. Rapid Commun Mass Spectrom 19:1392–1400. https://doi.org/10.1002/rcm.1925

    Article  CAS  PubMed  Google Scholar 

  209. Petzke KJ, Fuller BT, Metges CC (2010) Advances in natural stable isotope ratio analysis of human hair to determine nutritional and metabolic status. Curr Opin Clin Nutr MetabIc Care 13:532–540. https://doi.org/10.1097/MCO.0b013e32833c3c84

    Article  CAS  Google Scholar 

  210. Styring AK, Sealy JC, Evershed RP (2010) Resolving the bulk δ15N values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids. Geochim Cosmochim Acta 74:241–251. https://doi.org/10.1016/j.gca.2009.09.022

    Article  CAS  Google Scholar 

  211. Styring AK, Kuhl A, Knowles TDJ, Fraser RA, Bogaard A, Evershed RP (2012) Practical considerations in the determination of compound-specific amino acid δ15N values in animal and plant tissues by gas chromatography-combustion-isotope ratio mass spectrometry, following derivatisation to their N-acetylisopropyl esters. Rapid Commun Mass Spectrom 26:2328–2334. https://doi.org/10.1002/rcm.6322

    Article  CAS  PubMed  Google Scholar 

  212. Paolini M, Ziller L, Laursen KH, Husted S, Camin F (2015) Compound-specific δ15N and δ13C analyses of amino acids for potential discrimination between organically and conventionally grown wheat. J Agric Food Chem 63:5841–5850. https://doi.org/10.1021/acs.jafc.5b00662

    Article  CAS  PubMed  Google Scholar 

  213. Sabadel AJM, Woodward EMS, Van Hale R, Frew RD (2016) Compound-specific isotope analysis of amino acids: a tool to unravel complex symbiotic trophic relationships. Food Webs 6:9–18. https://doi.org/10.1016/j.fooweb.2015.12.003

    Article  Google Scholar 

  214. Faulhaber S, Hener U, Mosandl A (1997) GC/IRMS analysis of mandarin essential oils. 1. δ13CPDB and δ15NAIR values of methyl N-methylanthranilate. J Agric Food Chem 45:2579–2583

    Article  CAS  Google Scholar 

  215. Palhol F, Lamoureux C, Naulet N (2003) 15N isotopic analyses: a powerful tool to establish links between seized 3,4-methylenedioxymethamphetamine (MDMA) tablets. Anal Bioanal Chem 376:486–490. https://doi.org/10.1007/s00216-003-1849-6

    Article  CAS  PubMed  Google Scholar 

  216. Palhol F, Lamoureux C, Chabrillat M, Naulet N (2004) 15N/14N isotopic ratio and statistical analysis: an efficient was of linking seized ecstasy tablets. Anal Chim Acta 510:1–8. https://doi.org/10.1016/j.aca.2003.12.069

    Article  CAS  Google Scholar 

  217. Chickaraishi Y, Kashiyama Y, Ogawa NO, Kitazato H, Satoh M, Nomoto S, Ohkouchi N (2008) A compound-specific isotope method for measuring the stable nitrogen isotopic composition of tetrapyrroles. Org Geochem 39:510–520. https://doi.org/10.1016/j.orggeochem.2007.08.010

    Article  CAS  Google Scholar 

  218. Svensson E, Schouten S, Stam A, Middelburg JJ, Sinninghe Damsté JS (2015) Compound-specific stable isotope analysis of nitrogen-containing intact polar lipids. Rapid Commun Mass Spectrom 29:2263–2271. https://doi.org/10.1002/rcm.7393

    Article  CAS  PubMed  Google Scholar 

  219. Maxfield PJ, Dildar N, Hornibrook ERC, Stott AW, Evershed RP (2012) Stable isotope switching (SIS): a new stable isotope probing (SIP) approach to determine carbon flow in the soil food web and dynamics in organic matter pools. Rapid Commun Mass Spectrom 26:997–1004. https://doi.org/10.1002/rcm.6172

    Article  CAS  PubMed  Google Scholar 

  220. Petzke KJ, Metges CC (2012) Practical recommendations for the reduction of memory effects in compound-specific 15N/14N-ratio analysis of enriched amino acids by gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 26:195–204. https://doi.org/10.1002/rcm.5319

    Article  CAS  PubMed  Google Scholar 

  221. Bos C, Metges CC, Gaudichon C, Petzke KJ, Pueyo ME, Morens C, Everwand J, Benamouzig R, Tomé D (2003) Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. J Nutr 133:1308–1315

    Article  CAS  PubMed  Google Scholar 

  222. Dänicke S, Nieto R, Lobley GE, Fuller MF, Brown DS, Milne E, Calder AG, Chen S, Grant I, Böttcher W (1999) Responses in the absorptive phase in muscle and liver protein synthesis rates of growing rats. Archiv für Tierernaehrung 52:41–52. https://doi.org/10.1080/17450399909386150

    Article  Google Scholar 

  223. Dänicke S, Böttcher W, Simon O, Jeroch H (2001) The measurement of muscle protein synthesis in broilers with a flooding dose technique: use of 15N-labelled phenylalanine, GC-MS and GC-C-IRMS. Isot Environ Health Stud 37:213–225. https://doi.org/10.1080/10256010108033297

    Article  Google Scholar 

  224. Fromentin C, Sanders P, Nau F, Anton M, Fromentin G, Tomé D, Thibault J-N, Gaudichon C (2012) A pilot study for the intrinsic labeling of egg proteins with 15N and 13C. Rapid Commun Mass Spectrom 26:43–48. https://doi.org/10.1002/rcm.5291

    Article  CAS  PubMed  Google Scholar 

  225. Mariotti F, Petzke KJ, Bonnet D, Szezepanski I, Bos C, Huneau J-F, Fouillet H (2013) Kinetics of the utilization of dietary arginine for nitric oxide and urea synthesis: insight into the arginine–nitric oxide metabolic system in humans. Am J Clin Nutr 97:972–979. https://doi.org/10.3945/ajcn.112.048025

    Article  CAS  PubMed  Google Scholar 

  226. Metges CC, Petzke KJ, El-Khoury AE, Henneman L, Grant I, Bedri S, Regan MM, Fuller MF, Young VR (1999) Incorporation of urea and ammonia nitrogen into ileal and fecal microbial proteins and plasma free amino acids in normal men and ileostomates. Am J Clin Nutr 70:1046–1058

    Article  CAS  PubMed  Google Scholar 

  227. Petzke KJ, Korkushko OV, Semesko TM, Metges CC (1997) N-isotopic composition in human plasma protein amino acids at natural abundance level and after a single [15N2] urea administration measured by GC-C-IRMS. Isot Environ Health Stud 33:267–275. https://doi.org/10.1080/10256019708234037

    Article  CAS  Google Scholar 

  228. Petzke KJ, Grigorov JG, Korkushko OV, Kovalenko NK, Semesko TG, Metges CC (1998) Incorporation of urea nitrogen into fecal protein and plasma protein amino acids in elderly human volunteers after ingestion of lactic acid bacteria. Z Für Ernährungswissenschaft 37:368–375

    Article  CAS  Google Scholar 

  229. Tobias C, Giblin A, McClelland J, Tucker J, Peterson B (2003) Sediment DIN fluxes and preferential recycling of benthic microalgal nitrogen in a shallow macrotidal estuary. Mar Ecol Progess Ser 257:25–36

    Article  CAS  Google Scholar 

  230. Van Engeland T, Bouma TJ, Morris EP, Brun FG, Peralta G, Lara M, Hendriks IE, van Rijswijk P, Veuger B, Soetaert K, Middelburg JJ (2013) Dissolved organic matter uptake in a temperate seagrass ecosystem. Mar Ecol Prog Ser 478:87–100. https://doi.org/10.3354/meps10183

    Article  CAS  Google Scholar 

  231. Veuger B, Middelburg JJ, Boschker HTS, Houtekamer M (2005) Analysis of 15N incorporation into D-alanine: a new method for tracing nitrogen uptake by bacteria. Limnol Ocean: Methods 3:230–240

    Article  CAS  Google Scholar 

  232. Veuger B, Middelburg JJ (2007) Incorporation of nitrogen from amino acids and urea by benthic microbes: role of bacteria versus algae and coupled incorporation of carbon. Aquat Microb Ecol 48:35–46

    Article  Google Scholar 

  233. Sauheitl L, Glaser B, Weigelt A (2009) Advantages of compound-specific stable isotope measurements over bulk measurements in studies on plant uptake of intact amino acids. Rapid Commun Mass Spectrom 23:3333–3342. https://doi.org/10.1002/rcm.4255

    Article  CAS  PubMed  Google Scholar 

  234. Segschneider H-J, Hofmann D, Schmidt G, Russow R (1995) Incorporation of 15NO2 nitrogen into individual amino acids by sunflowers using Gc-C-Irms. Isot Environ Health Stud 31:315–325. https://doi.org/10.1080/10256019508036277

    Article  CAS  Google Scholar 

  235. Molero G, Aranjuelo I, Teixidor P, Araus JL, Nogués S (2011) Measurement of 13C and 15N isotope labeling by gas chromatography/combustion/isotope ratio mass spectrometry to study amino acid fluxes in a plant-microbe symbiotic association. Rapid Commun Mass Spectrom 25:599–607. https://doi.org/10.1002/rcm.4895

    Article  CAS  PubMed  Google Scholar 

  236. Arndt K, Hofmann D, Gehre M, Krumbiegel P (1998) 15N investigation into the effect of a pollutant on the nitrogen metabolism of Tetrahymena pyriformis as a model for environmental medical research. Environ Health Perspect 106:493–497

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Dörr N, Kaiser K, Sauheitl L, Lamersdorf N, Stange CF, Guggenberger G (2012) Fate of ammonium 15N in a Norway spruce forest under long-term reduction in atmospheric N deposition. Biogeochemistry 107:409–422. https://doi.org/10.1007/s10533-010-9561-z

    Article  CAS  Google Scholar 

  238. Redmile-Gordon MA, Evershed RP, Hirsch PR, White RP, Goulding KWT (2015) Soil organic matter and the extracellular microbial matrix show contrasting responses to C and N availability. Soil Biol Biochem 88:257–267. https://doi.org/10.1016/j.soilbio.2015.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Addison SL, McDonald IR, Lloyd-Jones G (2010) Stable isotope probing: technical considerations when resolving 15N-labeled RNA in gradients. J Microbiol Methods 80:70–75. https://doi.org/10.1016/j.mimet.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  240. Buckley DH, Huangyutitham V, Hsu S-F, Nelson TA (2007) Stable isotope probing with 15N achieved by disentangling the effects of genome G + C content and isotope enrichment on DNA density. Appl Environ Microbiol 73:3189–3195. https://doi.org/10.1128/AEM.02609-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Cadisch G, Espana M, Causey R, Richter M, Shaw E, Morgan JAW, Rahn C, Bending GD (2005) Technical considerations for the use of 15N-DNA stable-isotope probing for functional microbial activity in soils. Rapid Commun Mass Spectrom 19:1424–1428. https://doi.org/10.1002/rcm.1908

    Article  CAS  PubMed  Google Scholar 

  242. Cupples AM, Shaffer EA, Chee-Sanford JC, Sims GK (2007) DNA buoyant density shifts during 15N-DNA stable isotope probing. Microbiol Res 162:328–334. https://doi.org/10.1016/j.micres.2006.01.016

    Article  CAS  PubMed  Google Scholar 

  243. Buckley DH, Huangyutitham V, Hsu S-F, Nelson TA (2007) Stable isotope probing with 15N2 reveals novel noncultivated diazotrophs in soil. Appl Environ Microbiol 73:3196–3204. https://doi.org/10.1128/AEM.02610-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Buckley DH, Huangyutitham V, Hsu S-F, Nelson TA (2008) 15N2-DNA-stable isotope probing of diazotrophic methanotrophs in soil. Soil Biol Biochem 40:1272–1283. https://doi.org/10.1016/j.soilbio.2007.05.006

    Article  CAS  Google Scholar 

  245. Roh H, Yu C-P, Fuller ME, Chu K-H (2009) Identification of hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading microorganisms via 15N-stable isotope probing. Environ Sci Technol 43:2505–2511

    Article  CAS  PubMed  Google Scholar 

  246. Andeer P, Stahl DA, Lillis L, Strand SE (2013) Identification of microbial populations assimilating nitrogen from RDX in munitions contaminated military training range soils by high sensitivity stable isotope probing. Environ Sci Technol 47:10356–10363. https://doi.org/10.1021/es401729c

    Article  CAS  PubMed  Google Scholar 

  247. Jayamani I, Manzella MP, Cupples AM (2013) RDX degradation potential in soils previously unexposed to RDX and the identification of RDX-degrading species in one agricultural soil using stable isotope probing. Water Air Soil Pollut 224:1745. https://doi.org/10.1007/s11270-013-1745-4

    Article  CAS  Google Scholar 

  248. Cho K-C, Lee DG, Fuller ME, Hatzinger PB, Condee CW, Chu K-H (2015) Application of 13C and 15N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions. J Hazard Mater 297:42–51. https://doi.org/10.1016/j.jhazmat.2015.04.059

    Article  CAS  PubMed  Google Scholar 

  249. Wawrik B, Callaghan AV, Bronk DA (2009) Use of inorganic and organic nitrogen by Synechococcus spp. and diatoms on the West Florida Shelf as measured using stable isotope probing. Appl Environ Microbiol 75:6662–6670. https://doi.org/10.1128/AEM.01002-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. España M, Rasche F, Kandeler E, Brune T, Rodriguez B, Bending GD, Cadisch G (2011) Assessing the effect of organic residue quality on active decomposing fungi in a tropical Vertisol using 15N-DNA stable isotope probing. Fungal Ecol 4:115–119. https://doi.org/10.1016/j.funeco.2010.09.005

    Article  Google Scholar 

  251. España M, Rasche F, Kandeler E, Brune T, Rodriguez B, Bending GD, Cadisch G (2011) Identification of active bacteria involved in decomposition of complex maize and soybean residues in a tropical Vertisol using 15N-DNA stable isotope probing. Pedobiologia 54:187–193. https://doi.org/10.1016/j.pedobi.2011.03.001

    Article  CAS  Google Scholar 

  252. Bell TH, Yergeau E, Martineau C, Juck D, Whyte LG, Greer CW (2011) Identification of nitrogen-incorporating bacteria in petroleum-contaminated Arctic soils by using [15N] DNA-based stable isotope probing and pyrosequencing. Appl Environ Microbiol 77:4163–4171. https://doi.org/10.1128/AEM.00172-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Niu J, Kasuga I, Kurisu F, Furumai H, Shigeeda T (2013) Evaluation of autotrophic growth of ammonia-oxidizers associated with granular activated carbon used for drinking water purification by DNA-stable isotope probing. Water Res 47:7053–7065. https://doi.org/10.1016/j.watres.2013.07.056

    Article  CAS  PubMed  Google Scholar 

  254. Wang X, Han C, Zhang J, Huang Q, Deng H, Deng Y, Zhong W (2015) Long-term fertilization effects on active ammonia oxidizers in an acidic upland soil in China. Soil Biol Biochem 84:28–37. https://doi.org/10.1016/j.soilbio.2015.02.013

    Article  CAS  Google Scholar 

  255. Brink C, van Grinsven H, Jacobsen BH, Rabl A, Gren I-M, Holland M, Klimont Z, Hicks K, Brouwer R, Dickens R, Willems J, Termansen M, Velthof G, Alkemade R, van Oorschot M, Webb J (2011) Costs and benefits of nitrogen in the environment. In: Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti B (eds) The European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press, UK, pp 513–540

    Chapter  Google Scholar 

  256. Knowles TDJ (2009) Following the fate of proteinaceous material in soil using a compound-specific 13C- and 15N-labelled tracer approach, Unpublished Ph.D. Thesis, University of Bristol, Bristol, UK

    Google Scholar 

  257. White R, Murray S, Rohweder M (2000) Pilot analysis of global ecosystems: grassland ecosystems. World Resources Institute, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Fiona Charteris .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Charteris, A. (2019). Introduction. In: 15N Tracing of Microbial Assimilation, Partitioning and Transport of Fertilisers in Grassland Soils. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-31057-8_1

Download citation

Publish with us

Policies and ethics