Skip to main content

Anatomy of the Spinal Meninges

  • Chapter
  • First Online:
Spinal Anatomy

Abstract

The spinal meninges constitute a set of concentric envelops wrapping the neuraxis and the nerve roots of all vertebrates. The spinal meninges have received less attention than the cranial meninges in the literature so that several points remain poorly understood like their development. Their constancy among the chordates shows their crucial involvement in central nervous system homeostasis and suggests a role far beyond a hydrodynamic protection of the neuraxis. This work provides an extensive review of the spinal meninges, from an overview of their embryology to a descriptive and topographic anatomy with clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelkenberg U, von Rautenfeld DB, Brinker T, Hans VH. Chicken arachnoid granulations: a new model for cerebrospinal fluid absorption in man. Neuroreport. 2001;12(3):553–7.

    Article  CAS  PubMed  Google Scholar 

  2. Ariëns Kappers CU. Anatomie comparée du système nerveux, particulièrement de celui des Mammifères et de l’Homme. Paris: Masson et Cie Inc.; 1947.

    Google Scholar 

  3. Heisey SR. Cerebrospinal and extracellular fluid spaces in turtle brain. Am J Phys. 1970;219:1564–7.

    Article  CAS  Google Scholar 

  4. Bagnall KM, Higgins SJ, Sanders EJ. The contribution made by cells from a single somite to tissues within a body segment and assessment of their integration with similar cells from adjacent segments. Development. 1989;107:931–43.

    CAS  PubMed  Google Scholar 

  5. Halata Z, Grim M, Christ B. Origin of spinal cord meninges, sheaths of peripheral nerves, and cutaneous receptors including Merkel cells. An experimental and ultrastructural study with avian chimeras. Anat Embryol. 1990;82:529–37.

    Google Scholar 

  6. Aoto K, Sandell LL, Butler Tjaden NE, Yuen KC, Watt KE, Black BL, Durnin M, Trainor PA. Mef2c-F10N enhancer driven β-galactosidase (LacZ) and Cre recombinase mice facilitate analyses of gene function and lineage fate in neural crest cells. Dev Biol. 2015;402(1):3–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Catala M. Embryonic and fetal development of structures associated with the cerebro-spinal fluid in man and other species. Part I: The ventricular system, meninges and choroid plexuses. Arch Anat Cytol Pathol. 1998;46:153–69.

    CAS  PubMed  Google Scholar 

  8. Pietri T, Eder O, Blanche M, Thiery JP, Dufour S. The human tissue plasminogen activator-Cre mouse: a new tool for targeting specifically neural crest cells and their derivatives in vivo. Dev Biol. 2003;259(1):176–87.

    Article  CAS  PubMed  Google Scholar 

  9. Shibata S, Yasuda A, Renault-Mihara F, Suyama S, Katoh H, Inoue T, Inoue YU, Nagoshi N, Sato M, Nakamura M, Akazawa C, Okano H. Sox10-Venus mice: a new tool for real-time labeling of neural crest lineage cells and oligodendrocytes. Mol Brain. 2010;3:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yamauchi Y, Abe K, Mantani A, Hitoshi Y, Suzuki M, Osuzu F, Kuratani S, Yamamura K. A novel transgenic technique that allows specific marking of the neural crest cell lineage in mice. Dev Biol. 1999;212:191–203.

    Article  CAS  PubMed  Google Scholar 

  11. Sensenig EC. The early development of the meninges of the spinal cord in human embryos. Contr Embryol Carneg Instn. 1951;34:145–57.

    Google Scholar 

  12. Osaka K, Handad H, Matsumoto S, Yasuda M. Development of the cerebrospinal fluid pathway in the normal and abnormal human development. Childs Brain. 1980;6:26–38.

    CAS  PubMed  Google Scholar 

  13. O’Rahilly R, Müller F. The meninges in human development. J Neuropathol Exp Neurol. 1986;45(5):588–608.

    Article  PubMed  Google Scholar 

  14. Streeter GF. Factors involved in the formation of the filum terminale. Am J Anat. 1919;25:1–11.

    Article  Google Scholar 

  15. Barson AJ. The vertebral level of termination of the spinal cord during normal and abnormal development. J Anat. 1970;3:489–97.

    Google Scholar 

  16. Vandenabeele F, Creemers J, Lambrichts I. Ultrastructure of the human spinal arachnoid mater and dura mater. J Anat. 1996;189(Pt 2):417–30.

    PubMed  PubMed Central  Google Scholar 

  17. Lazorthes G, Gouazé A, Djindjian R. Vascularisation et circulation de la moelle épinière, anatomie, physiologie, pathologie, angiographie. Paris: Masson Inc.; 1973.

    Google Scholar 

  18. Ivanow G, Romodanowsky K. Uber den anatomischen Zusammenhang der cerebralenund spinalen submeningealen Raume mit den Lymphsystem. Z Gee Exp Med. 1928;58:596–607.

    Google Scholar 

  19. Brierley JB, Field EJ. The connexions of the spinal sub-arachnoid space with the lymphatic. J Anat. 1948;82:153–66.

    PubMed  PubMed Central  Google Scholar 

  20. Foldi M, Csillik B, Zoltan OT. Lymphatic drainage of the brain. Experientia. 1968;24:1283–7.

    Article  CAS  PubMed  Google Scholar 

  21. Edgar MA, Nundy S. Innervation of the spinal dura mater. J Neurol Neurosurg Psychiatry. 1966;29:530–4.

    Article  PubMed Central  Google Scholar 

  22. Groen J, Baljet B, Drukker J. The innervation of the spinal dura mater: anatomy and clinical implications. Acta Neurochir. 1988;92:39–46.

    Article  CAS  PubMed  Google Scholar 

  23. Massiat MH. Bases anatomiques de l’infiltration du nerf sinu-vertébral de Luschka en L2. Nantes: Université de Nantes, Faculté de Médecine; 2002.

    Google Scholar 

  24. Raoul S. Etude anatomique du nerf sinu-vertébral, Thèse de Médecine, Université de Nantes, Faculté de Médecine. 1999.

    Google Scholar 

  25. Jackson HC, Winkelmann RK, Bickel WH. Nerve endings in the human lumbar spinal column and related structures. J Bone Joint Surg. 1966;48:1272–81.

    Article  PubMed  Google Scholar 

  26. Kuslich SD, Ulstrom CL, Michael CJ. The tissue origin of low back pain and sciatica: a report of pain response to tissue stimulation during operations on the lumbar spine using local anesthesia. Orthop Clin North Am. 1991;22:181–7.

    CAS  PubMed  Google Scholar 

  27. Wiberg G. Back pain in relation to the nerve supply of the intervertebral disc. Acta Orthop Scand. 1949;19:211–21.

    Article  CAS  PubMed  Google Scholar 

  28. Nicholas DS, Weller RO. The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study. J Neurosurg. 1988;69:276–82.

    Article  CAS  PubMed  Google Scholar 

  29. Nabeshima S, Reese TS, Landis DM, Brightman MW. Junctions in the meninges and marginal glia. J Comp Neurol. 1975;164(2):127–69.

    Article  CAS  PubMed  Google Scholar 

  30. Himango WA, Low FN. The fine structure of a lateral recess of the subarachnoid space in the rat. Anat Rec. 1971;171:1–19.

    Article  CAS  PubMed  Google Scholar 

  31. Ulbrich EJ, Schraner C, Boesch C, Hodler J, Busato A, Anderson SE, Eigenheer S, Zimmermann H, Sturzenegger M. Normative MR cervical spinal canal dimensions. Radiology. 2014;271(1):172–82. https://doi.org/10.1148/radiol.13120370.

    Article  PubMed  Google Scholar 

  32. Genevay S, Atlas SJ. Lumbar spinal stenosis. Best Pract Res Clin Rheumatol. 2010;24(2):253–65.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Katz JN, Harris MB. Lumbar spinal stenosis. N Engl J Med. 2008;358:818–25.

    Article  CAS  PubMed  Google Scholar 

  34. Kido DK, Gomez DG, Pavese AM Jr, Potts DG. Human spinal arachnoid villi and granulations. Neuroradiology. 1976;11:221–8.

    Article  CAS  PubMed  Google Scholar 

  35. Welch K, Pollay M. The spinal arachnoid villi of the monkeys Cercopithecus aethiops and Macaca irus. Anat Rec. 1963;145:43–8.

    Article  CAS  PubMed  Google Scholar 

  36. Marmarou A, Shulman K, LaMorgese J. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg. 1975;43:523–34.

    Article  CAS  PubMed  Google Scholar 

  37. Pollay M. The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res. 2010;7:9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Voelz K, Kondziella D, von Rautenfeld DB, Brinker T, Ludemann W. A ferritin tracer study of compensatory spinal CSF outflow pathways in kaolin-induced hydrocephalus. Acta Neuropathol. 2007;113:569–75.

    Article  CAS  PubMed  Google Scholar 

  39. Fukushi J, Makagiansar IT, Stallcup WB. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Mol Biol Cell. 2004;15:3580–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kural C, Guresci S, Simsek GG, Arslan E, Tehli O, Solmaz I, Izci Y. Histological structure of filum terminale in human fetuses. J Neurosurg Pediatr. 2014;13(4):362–7.

    Article  PubMed  Google Scholar 

  41. Fontes RB, Saad F, Soares MS, de Oliveira F, Pinto FC, Liberti EA. Ultrastructural study of the filum terminale and its elastic fibers. Neurosurgery. 2006;58(5):978–84.

    Article  PubMed  Google Scholar 

  42. Weller RO. Microscopic morphology and histology of the human meninges. Morphologie. 2005;89:22–34.

    Article  CAS  PubMed  Google Scholar 

  43. Krahn V. The pia mater at the site of the entry of blood vessels into the central nervous system. Anat Embryol. 1982;164(2):257–63.

    Article  CAS  Google Scholar 

  44. Krisch B, Leonhardt H, Oksche A. Compartments and perivascular arrangement of the meninges covering the cerebral cortex of the rat. Cell Tissue Res. 1984;238(3):459–74.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang ET, Inman CB, Weller RO. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat. 1990;170:111–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tarlov IM. Spinal perineurial and meningeal cysts. J Neurol Neurosurg Psychiatry. 1970;33:833–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nabors MW, Pait TG, Byrd EB, Karim NO, Davis DO, Kobrine AI, Rizzoli HV. Updated assessment and current classification of spinal meningeal cysts. J Neurosurg. 1988;68(3):366–77.

    Article  CAS  PubMed  Google Scholar 

  48. Schreiber F, Haddad B. Lumbar and sacral cysts causing pain. J Neurosurg. 1951;8:504–9.

    Article  CAS  PubMed  Google Scholar 

  49. Rexed BA, Wennstrom KG. Arachnoidal proliferation and cystic formation in the spinal nerve-root pouches of man. J Neurosurg. 1959;16:73–84.

    Article  CAS  PubMed  Google Scholar 

  50. Lucantoni C, Than KD, Wang AC, Valdivia-Valdivia JM, Maher CO, La Marca F, Park P. Tarlov cysts: a controversial lesion of the sacral spine. Neurosurg Focus. 2011;31(6):E14.

    Article  PubMed  Google Scholar 

  51. Alicioglu B, Sarac A, Tokuc B. Does abdominal obesity cause increase in the amount of epidural fat? Eur Spine J. 2008;17(10):1324–8. https://doi.org/10.1007/s00586-008-0724-8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wu HT, Schweitzer ME, Parker L. Is epidural fat associated with body habitus? J Comput Assist Tomogr. 2005;29(1):99–102.

    Article  PubMed  Google Scholar 

  53. Beges C, Rousselin B, Chevrot A, et al. Epidural lipomatosis. Interest of magnetic resonance imaging in a weight-reduction treated case. Spine. 1994;19:251–4.

    Article  CAS  PubMed  Google Scholar 

  54. Fassett DR, Schmidt MH. Spinal epidural lipomatosis: a review of its causes and recommendations for treatment. Neurosurg Focus. 2004;16(4):E11.

    PubMed  Google Scholar 

  55. Kumar K, Nath RK, Nair CP, et al. Symptomatic epidural lipomatosis secondary to obesity. Case report. J Neurosurg. 1996;85:348–50.

    Article  CAS  PubMed  Google Scholar 

  56. Clarot F, Callonnec F, Douvrin F, Hannequin D, Simonet J, Proust B, Thiébot J. Giant cervical epidural veins after lumbar puncture in a case of intracranial hypotension. AJNR Am J Neuroradiol. 2000;21:787–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Stoquart-Elsankari S, Lehmann P, Villette A, Czosnyka M, Meyer ME, Deramond H, Balédent O. A phase-contrast MRI study of physiologic cerebral venous flow. J Cereb Blood Flow Metab. 2009;29(6):1208–15.

    Article  PubMed  Google Scholar 

  58. Reina MA, De Leon CO, Lopez A, Andre JA, Mora M, Fernandez A. The origin of the spinal subdural space: ultrastructure findings. Anesth Analg. 2002;94:991–5.

    Article  PubMed  Google Scholar 

  59. Stoltmann HF, Blackwood W. An anatomical study of the role of the dentate ligaments in the cervical spinal canal. J Neurosurg. 1966;24:43–6.

    Article  CAS  PubMed  Google Scholar 

  60. Garceau GJ. The filum terminale syndrome (the cord traction syndrome). J Bone Joint Surg Am. 1953;35:711–6.

    Article  PubMed  Google Scholar 

  61. Hoffman HJ, Hendrick EB, Humphreys R. The tethered spinal cord: its protean manifestations, diagnosis and surgical correction. Childs Brain. 1976;2:145–55.

    CAS  PubMed  Google Scholar 

  62. Selçuki M, Vatansever S, Inan S, Erdemli E, Bağdatoğlu C, Polat A. Is a filum terminale with a normal appearance really normal? Childs Nerv Syst. 2003;19(1):3–10.

    Article  PubMed  Google Scholar 

  63. Hendrick EB, Hoffman HJ, Humphreys RP. The tethered spinal cord. Clin Neurosurg. 1983;30:457–63.

    Article  CAS  PubMed  Google Scholar 

  64. Ozawa H, Matsumoto T, Ohashi T, Sato M, Kokubun S. Mechanical properties and function of the spinal pia mater. J Neurosurg Spine. 2004;1(1):122–7.

    Article  PubMed  Google Scholar 

  65. Courchesne E, Chisum HJ, Townsend J, Cowles A, Covington J, Egaas B, Harwood M, Hinds S, Press GA. Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology. 2000;216(3):672–82.

    Article  CAS  PubMed  Google Scholar 

  66. Edsbagge M, Tisell M, Jacobsson L, Wikkelso C. Spinal CSF absorption in healthy individuals. Am J Physiol Regul Integr Comp Physiol. 2004;287:R1450–5.

    Article  CAS  PubMed  Google Scholar 

  67. Sullivan JT, Grouper S, Walker MT, Parrish TB, McCarthy RJ, Wong CA. Lumbosacral cerebrospinal fluid volume in humans using three-dimensional magnetic resonance imaging. Anesth Analg. 2006;103:1306–10.

    Article  PubMed  Google Scholar 

  68. Hogan QH, Prost R, Kulier A, Taylor ML, Liu S, Mark L. Magnetic resonance imaging of cerebrospinal fluid volume and the influence of body habitus and abdominal pressure. Anesthesiology. 1996;84(6):1341–9.

    Article  CAS  PubMed  Google Scholar 

  69. Martyr JW, Song SJ, Hua J, Burrows S. The correlation between cauda equina nerve root volume and sensory block height after spinal anaesthesia with glucose-free bupivacaine. Anaesthesia. 2011;66(7):590–4.

    Article  CAS  PubMed  Google Scholar 

  70. Masserman JH. Cerebrospinal hydrodynamics: IV. Clinical experimental studies. Arch Neurol Psychiatr. 1934;32:523–53.

    Article  Google Scholar 

  71. Rubin RC, Henderson ES, Ommaya AK, Walker MD, Rall DP. The production of cerebrospinal fluid in man and its modification by acetazolamide. J Neurosurg. 1966;25(4):430–6.

    Article  CAS  PubMed  Google Scholar 

  72. Welch K, Friedman V. The cerebrospinal fluid valves. Brain. 1960;83:454–69.

    Article  CAS  PubMed  Google Scholar 

  73. Di Chiro G. Observations on the circulation of the cerebrospinal fluid. Acta Radiol Diagn (Stockh). 1966;5:988–1002.

    Article  Google Scholar 

  74. Quencer RM, Donovan Post MJ, Hinks RS. Cine MR in the evaluation of normal and abnormal CSF flow: intracranial and intraspinal studies. Neuroradiology. 1990;32:371–91.

    Article  CAS  PubMed  Google Scholar 

  75. Kida S, Pentazis A, Weller RO. Cerebrospinal fluid drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol. 1993;19:480–8.

    Article  CAS  PubMed  Google Scholar 

  76. Bucchieri F, Farina F, Zummo G, Cappello F. Lymphatic vessels of the dura mater: a new discovery? J Anat. 2015;227(5):702–3.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212(7):991–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol. 2012;12(9):623–35.

    Article  CAS  PubMed  Google Scholar 

  80. Sievers J, Pehlemann FW, Gude S, Berry M. A time course study of the alterations in the development of the hamster cerebellar cortex after destruction of the overlying meningeal cells with 6-hydroxydopamine on the day of birth. J Neurocytol. 1994;23:117–34.

    Article  CAS  PubMed  Google Scholar 

  81. Sievers J, Pehlemann FW, Gude S, Berry M. Meningeal cells organize the superficial glia limitans of the cerebellum and produce components of both the interstitial matrix and the basement membrane. J Neurocytol. 1994;23:135–49.

    Article  CAS  PubMed  Google Scholar 

  82. Struckhoff G. Coculture of meningeal and astrocytic cells – a model for the formation of the glial limiting membrane. Int J Devl Neurosci. 1995;13:595–606.

    Article  CAS  Google Scholar 

  83. Stylianopoulou F, Herbert J, Soares MB, Efstratiadis A. Expression of the insulin-like growth factor II gene in the choroid plexus and the leptomeninges of the adult rat central nervous system. Proc Natl Acad Sci USA. 1988;85:141–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Reiss K, Mentlein R, Sievers J, Hartmann D. Stromal cell-derived factor 1 is secreted by meningeal cells and acts as chemotactic factor on neuronal stem cells of the cerebellar external granular layer. Neuroscience. 2002;115:295–305.

    Article  CAS  PubMed  Google Scholar 

  85. Allen C, Sievers J, Berrety M, Jenner S. Experimental studies on cerebellar foliation. II. A morphometric analysis of cerebellar fissuration defects and growth retardation after neonatal treatment with 6-OHDA in the rat. J Comp Neurol. 1981;203:771–83.

    Article  CAS  PubMed  Google Scholar 

  86. Sievers J, Von Knebel Doeberitz C, Pehlmann FW, Berry M. Meningeal cells influence cerebellar development over a critical period. Anat Embryol. 1986;175:91–100.

    Article  CAS  Google Scholar 

  87. Nakagomi T, Nakano-Doi A, Matsuyama T. Leptomeninges: a novel stem cell niche harboring ischemia-induced neural progenitors. Histol Histopathol. 2015;30:391–9.

    CAS  PubMed  Google Scholar 

  88. Decimo I, Bifari F, Rodriguez FJ, et al. Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction. Stem Cells. 2011;29:2062–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Sakka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sakka, L. (2020). Anatomy of the Spinal Meninges. In: Vital, J., Cawley, D. (eds) Spinal Anatomy . Springer, Cham. https://doi.org/10.1007/978-3-030-20925-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20925-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20924-7

  • Online ISBN: 978-3-030-20925-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics